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It is demonstrated that the canonical distribution for asystem of a closed system follows directly from the
solution of the time-reversible Newtonian equation of rantin which the total energy is strictly conserved. It
is shown that this conclusion holds for both integrable arini@grable systems even though the whole system
may contain as little as a few thousand particles. In othedsjove demonstrate that the canonical distribution
holds for subsystems of experimentally relevant sizes ésémvation times.

PACS numbers: 05.20.-y, 05.45.Pq, 75.10.Pq

Boltzmann’s postulate of equaktpriori probability is the justification of statistical physics. The famous FermitBas
cornerstone of statistical mechanics. This postulateielim Ulam paradoxf[l?ElO] and its interpretation in terms of close
nates the difficulties of deriving the statistical propestof a  ness of their model to the completely integrable KdV model
many-body system from its dynamical evolution by introduc-(see Ref.|__[|4]) has emphasized (probably, overemphasizisd) t
ing a probabilistic description in terms of the (micro)caimal  point. Indeed, there is no tendency to equilibration in a sys
ensemble. In classical mechanics, the equivalence of thesem of noninteracting entities (particles of an ideal gas; n
two fundamentally different levels of description remaéhs  mal modes in harmonic oscillator systems, solitons in KdV
sive E,DZ]. systems, etc.). However, if we discuss an isolated Hamilto-

Although considerable progress has been made through tiféan system there is no way to obtain the statistical mecaani
development of ergodic theory, more than hundred years aftd€haviour (in particular irreversibility), not even for pstem
its conception a direct demonstration that the equptiori ~ With chaotic motion. An alternative is to considerapensys-
principle or, equivalently, the canonical distributioriéovs tem. For the open system, the role of integrability should be

particles is still missing {1,/2]. lated Hamiltonian system implies that its Liouville opeat

is diagonal in the representation of angle-action var'mB@a

: The dlscovery_ of dgterm|n|st|c chao_s has made a huQﬁf we choose a subsystehof the isolated integrable system
impact on old discussions of the relations between classi-

- . . S which is also integrable, then its Liouville operatayis di-
cal and statistical mechanics [3-6]. The irreversibilitie agonal in the angle-action variables of the subsystem. How-

macroworld is often related with unstable motion in genencever’ these variables can be different from those of thatied|

mechanical systems characterized by positive Lyapunov 4} amiltonian systemL andLs do not commute and cannot be

ponents and a non-zero Kolmogorov entropy. Integrable Sysiiiagonalizedsimultaneousl.yIt is not cleara-priori whether

tems are considered from this point of view as exceptiona o -
. : in this situation the subsyste®ican equilibrate or not, and
(not to say pathological) and irrelevant for the problem of
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what the conditions for this equilibration are. Surpriging
this very natural issue is not clarified yet and thus requires
additional studies.

Here we present clear and unambiguous evidence that the
canonical distribution fosfollows directly from the solution
of the time-reversible Newtonian equation of motion. Fur-
thermore, it is shown that the energy of the subsystem and
of the environment equilibrate on a relatively short, micro
scopic time scale, even if the whole system contains only of
the order of a thousand degrees of freedom. The key feature
of our demonstration is that we follow the time evolution of
a closed (isolated) system with a fixed energy and consider
only a subsystens of the closed system. The time evolu-
tion of the entire system is obtained by solving the Newtonia
equations of motion for typical initial states. We do not-per

form ensemble averaging nor do we invoke arguments basecn(iles are connected by harmonic springs or carry a magnet

on (non)ergodicity[[1[ ]2l 11=13] or on the thermodynamicipat interacts with its nearest neighbors. The blue (retyred par-
limit [L, 2]. Nevertheless, we observe thais governed by  ticles belong to the subsystem (environment).
the canonical distribution.

Our demonstration is not a mathematical proof but is based
on the exact numerical solution of what is perhaps the simintroducing systematic or cumulative errors. To this end, w
plest of all interacting many-body systems: a one-dimeraio transform the set of values ¢k1,...,xn, P1,..., Pn} at time
harmonic oscillator model of a solid. By solving the Newto- t = 0 to their corresponding normal-mode values, use the sim-
nian equation of motion of the whole, integrable system angle sinusoidal dependence of the latter to obtain theirashi
analyzing only a single trajectory of the subsystem in phasany pointt in time, and use the inverse transformation to find
space, we show that the number of times that the subsystemtise values of{xs,...,xn, p1,...,pn} at timet. This whole
observed to posses a certain energy is distributed acepimlin  procedure is numerically exact, up to machine precision.
canonical ensemble theory, implying for example that withi ~As a second example, we consider a ring of classical
the subsystem equipartition holdg[@—ﬂ]. Repeating thenagnetic moments, their total energy given by the Hamilto-
analysis for a one-dimensional model of classical magnetioian Eﬂ)]
moments which is known to exhibit chaotic behav/orl [18], it
is found that this conclusion does not depend on whether or H—_3J s S-Sy @)
not the motion is chaotic. For both models, the distribwgion i; =
extracted from the single-trajectory Newtonian dynamies a
found to be in excellent agreement with the corresponding rewheres§ is a 3-dimensional unit vector, representing the mag-
sults of microcanonical Monte Carlo simulations. netic moment of a particle at lattice site] defines the energy

As a first example, we consider the most basic classica$cale which we set equal to 1 in our numerical work dhid
model for the vibration in a solid, namely a set of particlés o the total number of moments. The equation of motion of these
massm, arranged on a ring and connected to their two neighmoments reads
bors by harmonic springs, see Hig. 1. The Hamiltonian of the d
system reads

FIG. 1. Picture of the harmonic oscillator (large) and maignao-
ent (small) models, subject to periodic boundary condgtidParti-

GS=JexS=-ISx(Ea+S), O
Nop2 ma? . . . . .
H= Zl_l +— Zl(Xi —Xit1)?, (1)  which obviously is nonlinear. Nevertheless, Hd. (3) admits
&5 2m 2 £ . NN .
a harmonic-wave solutio§;(t) = (acos6 + bsing) cosp +
wherex; and p; are the displacement and momentum of thecsing, where6 = ip — wt, w = 2(1— cosp)sing, @ and p
ith oscillator, mQ? is the spring constant ari is the total  are real constants, arfd, b, c) form a right-handed set of or-
number of particles. For convenienam,and Q are set to thogonal unit vector @1]. More generally, Eqd. (3) has
1 and all quantities such as momenta and displacements asenple analytical solutions fal = 2 andN = 3 [IE]. The
taken to be dimensionless. The positions are constraided to motion of N = 4 magnetic moments arranged on a ring is reg-
on a circle. Changing to normal-mode coordinafBs Xy}, ular [ﬂ]. ForN > 4, the system exhibits chaotic motion[18],
the Hamiltonian readsl = (1/2) 3R (P2 + wZXZ) where  except for special initial conditions such as the spin-waave
ox = 2|sinfik/N|. The motion of each set of coordinates soliton solutionsIEZ]. We integrate the nonlinear equatiof
{P, X} is described by a single sinusoidal oscillation and ismotion using a fourth-order Suzuki-Trotter product-fotenu
decoupled from the motion of all other sets. Clearly, théssel method which conserves (1) the volume of the phase space,
sical system is integrable which allows us to compute numer¢2) the length of each magnetic moment and (3) the total en-
ically the coordinates and momenta of the oscillators witho ergy E:k]. Due to the chaotic character of the motion of the
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FIG. 2. Left: Poincaré-type map of the differené®$ = (xo —x1)/2
and AP = (pg — p1)/2v/2 for a ring of N = 512 oscillators. This i ‘ ‘ ‘
system is integrable. Right: Poincaré-type map of thesthffices o 0 3000 6000 9000
AX' = S — S5 andAP' = S — S for a ring of N = 512 magnetic ‘ ‘

0 3000 6000 9000
moments. This system is chaotic|[18]. Each graph contaif 50 ‘
points.

FIG. 3. Time evolution of the energy per partiélg/Ns, as obtained

from a chain olNs = 80 particles embedded in a ringf= 512 par-
magnetic moments, their trajectories are unstable withe@s ticles. Initially, the subsystem &fs = 80 particles is put in its ground
to rounding and time-integration errors. Neverthelessntlr  state and the configuration of the environmenklpf= N — Ng = 432
merical method used guarantees that the motion of the magparticles is drawn randomly from its canonical distributat temper-

microcanonical ensemble simulation. tal black line: energy per particle of the whole system. Majnre:

. - . the energy of the oscillators in the subsystem quickly egao the
In our numerical work, the initial values of the coordmatesaverage energy of the whole system. The inset shows thesporé-
or magnetic moments are generated by standard Monte Carjgy data for the spin system.

methodsll_2|4], see the Supplementary Information.
In the normal-mode representation, each of the oscillators

traces out an ellipse in the, R) plane. However, in the system energy. After the relaxation to the equilibriumestat

original coordinates, this simplicity is lost as illustdtby ~ we monitor the energ¥s of the subsystem at regular time

the Poincaré map shown in FIg. 2(left). Clearly, it is diffic  intervals and construct a (normalized) frequency distidtu

to detect some regularity in this map. Moreover, this mapP(Es) of the energy of the subsystem, see Elg. 4.

is very similar to Fig[R(right), the Poincaré-type map of a The hypothesis that Newtonian dynamics causes the sub-

one-dimensional classical model of magnetic moments. Thisystem to visit points in phase-space with frequencies that

similarity exists in spite of the fact that the oscillatossgm  match with those of the canonical probability distributizan

is not chaotic. now be tested as follows. According to statistical mechgnic
The whole system is divided into two parts, a subsystemhe distribution of energy in the canonical ensemble ismive

with Ng particles and an environment wilig = N — Ng par- by [2]

ticles. The Hamiltonian is written ad = Hs-+ Hg + Hsg, _

whereHs (Hg) denotes the energy of the subsystem (environ- P(E)=9(E)e E/T/Z’ )

ment) andHsg denotes the energy due to the interaction of thewhereT E, g

subsystem with the environment. Thus, in the case of pasticl L

arranged on a ringids andHg are open chains of particles, function, respectively [2]. The functiop(E) has a maximum

: v )2
a.nd HSEfonlﬁ contz.a|||ns two ;[jerms of the forrfx — 1) or , atsome energg*, the most probable energy at the tempera-
S Sy for the oscillator and magnetic system, respectively. o (31 'In the vicinity of E*, we havel[2]

We first study the dynamic evolution of the subsystem when
it is brought in contact with the environment. Initially,ing p(E) = Aeaz(EfE*>2+a3(EfE*)3+a4(E7E*>3+---’ (5)
one of the procedures described in the Supplementary Infor-
mation, the subsystem and environment are prepared such th@hereA is a normalization constant and the coefficiemis=
they have a different energy. As the whole system evolves iril/n!)g"S(E)/JdE"|e- are determined by the microcanonical
time, strictly conserving the total energy, we monitor tine € entropyS(E) of the subsystent [2].
ergy of the subsystem as a function of time. Some represen- For the two models considered in this paper, the coefficients
tative results are shown in Figl 3, for both the harmonic os4, are simple functions of andNs (see Supplementary In-
cillator and magnetic moment model. From Hiy. 3, it is clearformation). Therefore, usin§ andE* as adjustable parame-
that for both models, the energy of the subsystymapidly  ters a fit of Eq.[(5) to the histograf(Es) obtained from the
approaches the average energy of the whole system. dynamical evolution of the subsystem yields an estimate of
Having established that the Newtonian equation of motiorthe temperatur&s of the subsystem. As shown in Fid. 4, the
drives the subsystem and environment to a common equilitsimulation data foP(Es) (red lines) and fittedb(E) (black
rium state, the next step is to study the distribution of ties  lines) are in excellent agreement, for both models alike. In

(E) and Z are the temperature (in units of
ks = 1), the total energy, the density of states and the partition
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D(Pnc(Es); P(Es)) is a convenient measure to quantify the dif-
ference between the two distributiofsc(Es) andP(Es) [IE].

In all cases, we find that the difference betw&si(Es) and
P(Es) is very small (see Supplementary Information). For in-
stance, for the system of oscillators witlg = 20,N = 65536
and 16 samples, we find thdd(Pmc(Es); P(Es)) ~ 4 x 1072,
indicating that the probability that the two distributioas
different is very small.

Having established that the interaction of the environment
with the subsystem causes both systems to equilibrate and
also drives the latter to its canonical state, it becomes pos
sible to derive from the Newtonian dynamics alone, estimate
for the equilibration time. To this end we express the equili
bration time estimated from the simulations in physicataini
FIG. 4. The distributiorP(Es) as a function of the energy per par- Typical frequencies of vibration in a solid are of the ordér o
ticle Es/Ns for different sizesNs of the subsystem, as obtained from 101Hz. Using this number to set the scale of the frequency
the solution of Newtonian equations of motion for the oatdt sys- Q in our model, we find that equilibration takes of the order
tem. Red linesNs = 20,40,60,80,100.120. 160 200 (broad to nar- 1 5-9 ¢ - gimilarly, for the system of magnetic moments, a

row) andN = 65536. Black lines: probability distribution predicted s . L .
by statistical mechanics E@l(5) using all terms ufie- E*)8. Inall realistic value ofl/kg is of the order of 10K, yielding an equi-

cases, the initial energy of the environment correspondsempera- Iipration ti.me f)f the order of 1¢°s. C'QSSicm spin systems
tureT = 1 and the number of samples isx40°. The inset shows the With Hamiltonians that encode frustration and/or disorafer

corresponding data for the spin system = 20,40,60,80,100 regular or random kind are however expected to exhibit large
andN = 2000, with the initial energy of the environment correspond possibly much larger equilibration time scales. The dymaimi

P(Eg/Ng)

ing to T = 0.329 and the number of samples i*10 properties for subsystems of such theories under Newtonian
evolution are beyond the scope of the present work.
the thermodynamic limitNg — « beforeNs — o), all but Even though the subsystems and the environments which

the quadratic term in the exponential can be neglected and tWe have simulated are very small in the thermodynamic sense,
distribution is Gaussian|[2]. Therefore, for larlye, Ts and the subsystem and environment equilibrate on a nanosecond
E* can be obtained by fitting a GaussianR(Es) but from time scale. Therefore, for an i_solated nanoparticle of even
Fig.[@, it is clear that for small subsystem siz&Fs) de- few thousand atoms, an experimental probe that concesitrate
viates significantly from a Gaussian. However, taking intoOn only & few of those atoms should yield data that follows
account the higher-order terms in the expansion Bq. (5), théhe canonical distribution.
agreement between simulation data and the prediction of sta Calculations have been performed at JSC under project
tistical mechanics is excellent. Repeating the simulatigith ~ JJSCO09. MIK acknowledges financial support from FOM, the
different initial conditions (including different initl@nergies  Netherlands. MAN is supported in part by the National Sci-
for the subsystem or the environment) strongly suggests th&nce Foundation. This work is partially supported by the- Mit
this agreement is generic. subishi Foundation (SM) and NCF, the Netherlands (HDR).

If the estimat€Ts is indeed the temperature of the subsys-
tem, the second central momentR{Es) should be related to
the specific heat of the subsystem. To check this, we define
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