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It is demonstrated that the canonical distribution for a subsystem of a closed system follows directly from the
solution of the time-reversible Newtonian equation of motion in which the total energy is strictly conserved. It
is shown that this conclusion holds for both integrable or nonintegrable systems even though the whole system
may contain as little as a few thousand particles. In other words, we demonstrate that the canonical distribution
holds for subsystems of experimentally relevant sizes and observation times.
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Boltzmann’s postulate of equala-priori probability is the
cornerstone of statistical mechanics. This postulate elimi-
nates the difficulties of deriving the statistical properties of a
many-body system from its dynamical evolution by introduc-
ing a probabilistic description in terms of the (micro)canonical
ensemble. In classical mechanics, the equivalence of these
two fundamentally different levels of description remainselu-
sive [1, 2].

Although considerable progress has been made through the
development of ergodic theory, more than hundred years after
its conception a direct demonstration that the equala-priori
principle or, equivalently, the canonical distribution follows
directly from the dynamical behavior of a finite number of
particles is still missing [1, 2].

The discovery of “deterministic chaos” has made a huge
impact on old discussions of the relations between classi-
cal and statistical mechanics [3–6]. The irreversibility in the
macroworld is often related with unstable motion in generic
mechanical systems characterized by positive Lyapunov ex-
ponents and a non-zero Kolmogorov entropy. Integrable sys-
tems are considered from this point of view as exceptional
(not to say pathological) and irrelevant for the problem of

justification of statistical physics. The famous Fermi-Pasta-
Ulam paradox [7–10] and its interpretation in terms of close-
ness of their model to the completely integrable KdV model
(see Ref. [4]) has emphasized (probably, overemphasized) this
point. Indeed, there is no tendency to equilibration in a sys-
tem of noninteracting entities (particles of an ideal gas, nor-
mal modes in harmonic oscillator systems, solitons in KdV
systems, etc.). However, if we discuss an isolated Hamilto-
nian system there is no way to obtain the statistical mechanical
behaviour (in particular irreversibility), not even for a system
with chaotic motion. An alternative is to consider anopensys-
tem. For the open system, the role of integrability should be
discussed in a different context. The integrability of the iso-
lated Hamiltonian system implies that its Liouville operator L
is diagonal in the representation of angle-action variables [5].
If we choose a subsystemS of the isolated integrable system
which is also integrable, then its Liouville operatorLS is di-
agonal in the angle-action variables of the subsystem. How-
ever, these variables can be different from those of the isolated
Hamiltonian system.L andLS do not commute and cannot be
diagonalizedsimultaneously. It is not cleara-priori whether
in this situation the subsystemS can equilibrate or not, and
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what the conditions for this equilibration are. Surprisingly,
this very natural issue is not clarified yet and thus requires
additional studies.

Here we present clear and unambiguous evidence that the
canonical distribution forS follows directly from the solution
of the time-reversible Newtonian equation of motion. Fur-
thermore, it is shown that the energy of the subsystem and
of the environment equilibrate on a relatively short, micro-
scopic time scale, even if the whole system contains only of
the order of a thousand degrees of freedom. The key feature
of our demonstration is that we follow the time evolution of
a closed (isolated) system with a fixed energy and consider
only a subsystemS of the closed system. The time evolu-
tion of the entire system is obtained by solving the Newtonian
equations of motion for typical initial states. We do not per-
form ensemble averaging nor do we invoke arguments based
on (non)ergodicity [1, 2, 11–13] or on the thermodynamic
limit [1, 2]. Nevertheless, we observe thatS is governed by
the canonical distribution.

Our demonstration is not a mathematical proof but is based
on the exact numerical solution of what is perhaps the sim-
plest of all interacting many-body systems: a one-dimensional
harmonic oscillator model of a solid. By solving the Newto-
nian equation of motion of the whole, integrable system and
analyzing only a single trajectory of the subsystem in phase
space, we show that the number of times that the subsystem is
observed to posses a certain energy is distributed according to
canonical ensemble theory, implying for example that within
the subsystem equipartition holds [14–17]. Repeating the
analysis for a one-dimensional model of classical magnetic
moments which is known to exhibit chaotic behavior [18], it
is found that this conclusion does not depend on whether or
not the motion is chaotic. For both models, the distributions
extracted from the single-trajectory Newtonian dynamics are
found to be in excellent agreement with the corresponding re-
sults of microcanonical Monte Carlo simulations.

As a first example, we consider the most basic classical
model for the vibration in a solid, namely a set of particles of
massm, arranged on a ring and connected to their two neigh-
bors by harmonic springs, see Fig. 1. The Hamiltonian of the
system reads

H =
N

∑
i=1

p2
i

2m
+

mΩ2

2

N

∑
i=1

(xi − xi+1)
2, (1)

wherexi and pi are the displacement and momentum of the
ith oscillator,mΩ2 is the spring constant andN is the total
number of particles. For convenience,m and Ω are set to
1 and all quantities such as momenta and displacements are
taken to be dimensionless. The positions are constrained tolie
on a circle. Changing to normal-mode coordinates{Pk,Xk},
the Hamiltonian readsH = (1/2)∑N−1

k=0

(

P2
k +ω2

k X2
k

)

where
ωk = 2|sinπk/N|. The motion of each set of coordinates
{Pk,Xk} is described by a single sinusoidal oscillation and is
decoupled from the motion of all other sets. Clearly, this clas-
sical system is integrable which allows us to compute numer-
ically the coordinates and momenta of the oscillators without

FIG. 1. Picture of the harmonic oscillator (large) and magnetic mo-
ment (small) models, subject to periodic boundary conditions. Parti-
cles are connected by harmonic springs or carry a magnetic moment
that interacts with its nearest neighbors. The blue (red) colored par-
ticles belong to the subsystem (environment).

introducing systematic or cumulative errors. To this end, we
transform the set of values of{x1, . . . ,xN, p1, . . . , pN} at time
t = 0 to their corresponding normal-mode values, use the sim-
ple sinusoidal dependence of the latter to obtain their values at
any pointt in time, and use the inverse transformation to find
the values of{x1, . . . ,xN, p1, . . . , pN} at time t. This whole
procedure is numerically exact, up to machine precision.

As a second example, we consider a ring of classical
magnetic moments, their total energy given by the Hamilto-
nian [19]

H =−J
N

∑
i=1

Si ·Si+1, (2)

whereSi is a 3-dimensional unit vector, representing the mag-
netic moment of a particle at lattice sitei, J defines the energy
scale which we set equal to 1 in our numerical work andN is
the total number of moments. The equation of motion of these
moments reads

d
dt

Si =
∂H
∂Si

×Si =−JSi × (Si−1+Si+1) , (3)

which obviously is nonlinear. Nevertheless, Eq. (3) admits
a harmonic-wave solutionSi(t) = (acosθi + bsinθi)cosφ +
csinφ , whereθi = ip−ωt, ω = 2(1− cosp)sinφ , φ and p
are real constants, and(a,b,c) form a right-handed set of or-
thogonal unit vectors [20, 21]. More generally, Eq. (3) has
simple analytical solutions forN = 2 andN = 3 [18]. The
motion ofN = 4 magnetic moments arranged on a ring is reg-
ular [18]. ForN > 4, the system exhibits chaotic motion [18],
except for special initial conditions such as the spin-waveand
soliton solutions [22]. We integrate the nonlinear equations of
motion using a fourth-order Suzuki-Trotter product-formula
method which conserves (1) the volume of the phase space,
(2) the length of each magnetic moment and (3) the total en-
ergy [23]. Due to the chaotic character of the motion of the
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FIG. 2. Left: Poincaré-type map of the differences∆X =(x0−x1)/2
and ∆P = (p0 − p1)/2

√
2 for a ring of N = 512 oscillators. This

system is integrable. Right: Poincaré-type map of the differences
∆X′ = Sx

1 −Sx
2 and ∆P′ = Sz

1 −Sz
2 for a ring of N = 512 magnetic

moments. This system is chaotic [18]. Each graph contains 5000
points.

magnetic moments, their trajectories are unstable with respect
to rounding and time-integration errors. Nevertheless, the nu-
merical method used guarantees that the motion of the mag-
netic moments strictly conserves the energy, as required for a
microcanonical ensemble simulation.

In our numerical work, the initial values of the coordinates
or magnetic moments are generated by standard Monte Carlo
methods [24], see the Supplementary Information.

In the normal-mode representation, each of the oscillators
traces out an ellipse in the(Xk,Pk) plane. However, in the
original coordinates, this simplicity is lost as illustrated by
the Poincaré map shown in Fig. 2(left). Clearly, it is difficult
to detect some regularity in this map. Moreover, this map
is very similar to Fig. 2(right), the Poincaré-type map of a
one-dimensional classical model of magnetic moments. This
similarity exists in spite of the fact that the oscillator system
is not chaotic.

The whole system is divided into two parts, a subsystem
with NS particles and an environment withNE = N−NS par-
ticles. The Hamiltonian is written asH = HS+ HE +HSE,
whereHS (HE) denotes the energy of the subsystem (environ-
ment) andHSE denotes the energy due to the interaction of the
subsystem with the environment. Thus, in the case of particles
arranged on a ring,HS andHE are open chains of particles,
andHSE only contains two terms of the form(xi − xi+1)

2 or
Si ·Si+1 for the oscillator and magnetic system, respectively.

We first study the dynamic evolution of the subsystem when
it is brought in contact with the environment. Initially, using
one of the procedures described in the Supplementary Infor-
mation, the subsystem and environment are prepared such that
they have a different energy. As the whole system evolves in
time, strictly conserving the total energy, we monitor the en-
ergy of the subsystem as a function of time. Some represen-
tative results are shown in Fig. 3, for both the harmonic os-
cillator and magnetic moment model. From Fig. 3, it is clear
that for both models, the energy of the subsystemEs rapidly
approaches the average energy of the whole system.

Having established that the Newtonian equation of motion
drives the subsystem and environment to a common equilib-
rium state, the next step is to study the distribution of the sub-
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FIG. 3. Time evolution of the energy per particleES/NS, as obtained
from a chain ofNS= 80 particles embedded in a ring ofN= 512 par-
ticles. Initially, the subsystem ofNS= 80 particles is put in its ground
state and the configuration of the environment ofNE =N−NS= 432
particles is drawn randomly from its canonical distribution at temper-
atureT = 1. Red line: energy per particle of the subsystem; horizon-
tal black line: energy per particle of the whole system. Mainfigure:
the energy of the oscillators in the subsystem quickly relaxes to the
average energy of the whole system. The inset shows the correspond-
ing data for the spin system.

system energy. After the relaxation to the equilibrium state,
we monitor the energyES of the subsystem at regular time
intervals and construct a (normalized) frequency distribution
P(ES) of the energy of the subsystem, see Fig. 4.

The hypothesis that Newtonian dynamics causes the sub-
system to visit points in phase-space with frequencies that
match with those of the canonical probability distributioncan
now be tested as follows. According to statistical mechanics,
the distribution of energy in the canonical ensemble is given
by [2]

p(E) = g(E)e−E/T/Z, (4)

where T, E, g(E) and Z are the temperature (in units of
kB = 1), the total energy, the density of states and the partition
function, respectively [2]. The functionp(E) has a maximum
at some energyE∗, the most probable energy at the tempera-
tureT [2]. In the vicinity of E∗, we have [2]

p(E) = Aea2(E−E∗)2+a3(E−E∗)3+a4(E−E∗)3+..., (5)

whereA is a normalization constant and the coefficientsan =
(1/n!)∂ nS(E)/∂En|E∗ are determined by the microcanonical
entropyS(E) of the subsystem [2].

For the two models considered in this paper, the coefficients
an are simple functions ofT andNS (see Supplementary In-
formation). Therefore, usingT andE∗ as adjustable parame-
ters a fit of Eq. (5) to the histogramP(Es) obtained from the
dynamical evolution of the subsystem yields an estimate of
the temperatureTS of the subsystem. As shown in Fig. 4, the
simulation data forP(ES) (red lines) and fittedp(E) (black
lines) are in excellent agreement, for both models alike. In
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FIG. 4. The distributionP(ES) as a function of the energy per par-
ticle ES/NS for different sizesNS of the subsystem, as obtained from
the solution of Newtonian equations of motion for the oscillator sys-
tem. Red lines:NS= 20,40,60,80,100,120,160,200 (broad to nar-
row) andN = 65536. Black lines: probability distribution predicted
by statistical mechanics Eq. (5) using all terms up to(E−E∗)8. In all
cases, the initial energy of the environment corresponds toa tempera-
tureT = 1 and the number of samples is 4×106. The inset shows the
corresponding data for the spin system forNS = 20,40,60,80,100
andN = 2000, with the initial energy of the environment correspond-
ing toT = 0.329 and the number of samples is 106.

the thermodynamic limit (NE → ∞ beforeNS → ∞), all but
the quadratic term in the exponential can be neglected and the
distribution is Gaussian [2]. Therefore, for largeNS, TS and
E∗ can be obtained by fitting a Gaussian toP(ES) but from
Fig. 4, it is clear that for small subsystem sizes,P(Es) de-
viates significantly from a Gaussian. However, taking into
account the higher-order terms in the expansion Eq. (5), the
agreement between simulation data and the prediction of sta-
tistical mechanics is excellent. Repeating the simulations with
different initial conditions (including different initial energies
for the subsystem or the environment) strongly suggests that
this agreement is generic.

If the estimateTS is indeed the temperature of the subsys-
tem, the second central moment ofP(ES) should be related to
the specific heat of the subsystem. To check this, we define

CS≡
〈E2

S〉− 〈ES〉2

T2
S

(6)

where 〈ES〉 and 〈E2
S〉 are the first and second moment of

P(ES), respectively. Our numerical results (see Supplemen-
tary Information) are in excellent agreement with canonical
ensemble theory.

As a conclusive test, we perform microcanonical Monte
Carlo simulations for both models (see Supplementary Infor-
mation) and obtain the distributionsPmc(Es) of the subsys-
tems. The microcanonical Monte Carlo simulation generates
statistically independent configurations of the whole system
strictly according to the microcanonical distribution butsam-
ples the phase space in a completely different manner than
does Newtonian dynamics. The Kullback-Leibler distance

D(Pmc(Es);P(Es)) is a convenient measure to quantify the dif-
ference between the two distributionsPmc(Es) andP(Es) [25].
In all cases, we find that the difference betweenPmc(Es) and
P(Es) is very small (see Supplementary Information). For in-
stance, for the system of oscillators withNS= 20,N = 65536
and 108 samples, we find thatD(Pmc(Es);P(Es)) ≈ 4×10−2,
indicating that the probability that the two distributionsare
different is very small.

Having established that the interaction of the environment
with the subsystem causes both systems to equilibrate and
also drives the latter to its canonical state, it becomes pos-
sible to derive from the Newtonian dynamics alone, estimates
for the equilibration time. To this end we express the equili-
bration time estimated from the simulations in physical units.
Typical frequencies of vibration in a solid are of the order of
1011Hz. Using this number to set the scale of the frequency
Ω in our model, we find that equilibration takes of the order
of 10−9 s. Similarly, for the system of magnetic moments, a
realistic value ofJ/kB is of the order of 10 K, yielding an equi-
libration time of the order of 10−8 s. Classical spin systems
with Hamiltonians that encode frustration and/or disorderof
regular or random kind are however expected to exhibit larger,
possibly much larger equilibration time scales. The dynamical
properties for subsystems of such theories under Newtonian
evolution are beyond the scope of the present work.

Even though the subsystems and the environments which
we have simulated are very small in the thermodynamic sense,
the subsystem and environment equilibrate on a nanosecond
time scale. Therefore, for an isolated nanoparticle of evena
few thousand atoms, an experimental probe that concentrates
on only a few of those atoms should yield data that follows
the canonical distribution.
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