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The decoherence of a quantum syst8rooupled to a quantum environmeltis considered. For states
chosen uniformly at random from the unit hypersphere in thiedtt space of the closed syste&3n E we derive
a scaling relationship for the sum of the off-diagonal eleta®f the reduced density matrix 8fas a function
of the sizeDg of the Hilbert space oE. This sum decreases ag\1Dg as long asDg > 1. This scaling
prediction is tested by performing large-scale simulatiahich solve the time-dependent Schrodinger equation
for a ring of spin-¥2 particles, four of them belonging ®and the others t&. Provided that the time evolution
drives the whole system from the initial state toward a steteh has similar properties as states belonging
to the class of quantum states for which we derived the sgaéhationship, the scaling prediction holds. For
systems which do not exhibit this feature, it is shown thatéasing the complexity (in terms of connections)
of the environment or introducing a small amount of randossnie the interactions in the environment suffices
to observe the predicted scaling behavior.

PACS numbers: 03.65.Yz, 75.10.Jm, 75.10.Nr, 05.45.Pq

I. INTRODUCTION be derived from dynamical laws.

On the one hand there exists a variety of studies explor-

Decoherence of a quantum systeSrinteracting with a  ing the microcanonical thermalization in an isolated quent
quantum environmeriE is of importance for two reasons. System[[BH6]. On the other hand there exist various studies
First, decoherence @ is the primary requirement fdgto  investigating the process of canonical thermalization &fs
relax to a state described by a canonical ensemble at arcertdiem coupled to a (much) larger system|[3, 7-13] and of two
temperature [1]. Second, decoherence is arguably theslargdinite identical quantum systems prepared at different tmp
impediment for practical, realizable quantum compute}s [2 atures|[14] 15].

The large interest in technological areas like spintron- In previous work [16] 17], we numerically demonstrated
ics, quantum computing and quantum information processthat a quantum system interacting with an environment dt hig
ing have stimulated the theoretical research of quantum dytemperature relaxes to a state described by the canonical en
namics in open and closed interacting systems. Besides thsmble. In this paper we focus on investigating the dynamic
more application driven interest there persists the furetgad  properties of the decoherence of a quantum systebreing
and still unanswered question under which conditions &finit a subsystem of the whole syste®a+ E. We do this both
guantum system reaches thermal equilibrium and how this cawith a theoretical prediction and by simulating the dynanic
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of a relatively large syster8+ E of spin-1/2 particles using in detail the spin-12 Hamiltonians we have simulated to pro-
a time-dependent Schrodinger equation (TDSE) solver. [18)vide a case study for this scaling.

In particular, we investigate the scaling of the degree cbde

herence ofS with the size ofE, keeping the size o8 fixed.

Based on similar arguments as given in Refl [19], we find that A. Time evolution

the degree of decoherence $flecreases as/{/Dg, where

Dk is the dimension of the Hilbert space of the environmentif A pure state of the whole syste® E evolves in time ac-
the state of the whole system is chosen uniformly at randorgording to (in units ofi = 1)

from the unit hypersphere in the Hilbert space. In this paper Ds Dg
we denote states chosen uniformly at random from the unit |W(t)) = e ™ |W(0)) = z ci,pt)i,p), (2
hypersphere in the Hilbert space of the whole systemXgy “ i; =1

and of the environment byy".

We also address the question under what circumstances t
whole system evolves to a state which has the same degree &
decoherence as a staté™ In particular we study the case
in which the initial state oS+ E is a direct product of the

state|t/ 1)) of Sand a stateY” of E. If the initial state of the The spin Hamiltoniard models a svstem witiNe Spin-
whole systens+ E is slightly different from a given statex”, 1/2 partirc):les and an environment wiutyspin-l/z pgrtifles.
the dynamics may drive the whole system into a state WhicH’hus D — 2Ms andDg = 2. The whole systers-+ E con-
is very different from the given statex”, but which is of a tainsN — Ns+ Ne spin-1/2 particles and the dimension of its

similar type. We Investigate through our simulations W.”“mt Hilbert space iD = DsDe. In our simulations we use the
dynamics plays an important role in the decoherence inthat |

can driveS+ E to a state X” by introducing small world bond Spin-up — spin-down basis. Numerically, the real-time prop

; . . . agation bye ™ is carried out by means of the Chebyshev
connections irE and/or betwee® andE and by introducing : - -
randomness in the interaction strengths of the environment polynomial algorithm([22=25], thereby solving the TDSE for

h . ed as foll Secti h the whole system starting from the initial sta¥(0)). This
T € paper IS organized as 101ows. In Section Il ourt eo'algorithm yields results that are very accurate (close te ma
retical results for the scaling of the decoherenc8 afe pre-

sented, together with details of the one-dimensional rihg oChlne precision), independent of the time step used [18].
spin-1/2 particles which we simulate to better understand the

scaling prediction. Sections Ill-V contain results for tiree- B. Computational aspects

dimensional rings under study. In particular we look at the e
fect of adding additional bonds (Small World Bonds, SWBs)
between the system and environment spins and/or between ety

e o s o e o iCPU tme s mainly eermine by th number ofopratons
(Section V) Sec?ion VI contains our conclusions and a dis-to be performec_j on the spwﬁ part!cles. The CPU time does
cussion of c;ur results not put a hard limit on the S|mulqt|o_n. H_owever, the memory
' of the computer does severely limit which system sizes can
be calculated. The stat¥) of a N-spin-1/2 system is rep-
resented by a complex-valued vector of length= 2N, In
Il. THEORY, MODEL, AND METHODS view of the potentially large number of arithmetic operagip
it is advisable to use 13 - 15 digit floating-point arithmetic
The time evolution of a closed quantum system is governe¢corresponding to 8 bytes for a real number). Thus, to repre-
by the time-dependent Schrodinger equation (TDSE) [2], 21 sent a state of the quantum systenNo$pin-1/2 particles on
If the initial density matrix of an isolated quantum systesm i a conventional digital computer, we need a ledst?2bytes.
non-diagonal then, according to the time evolution dictate Hence, the amount of memory that is required to simulate a
by the TDSE, it remains non-diagonal. Therefore, in orderquantum system witN spin-1/2 particles increases exponen-
to decohere the systef) it is necessary to have the system tially with N. For example, foN = 24 (N = 36) we need at
Sinteract with an environmeri, also called a heat bath or least 256 MB (1 TB) of memory to store a single arbitrary
spin bath if the environment is composed of spins. Thus, thetate|'V). In practice we need three vectors, memory for com-

where the set of statggi, p)} denotes a complete set of or-
normal states in some chosen basis,2gdndDg are the
ensions of the Hilbert spaces of the system and the envi-
ronment, respectively. We assume tBg{and Dg are both
finite.

Computer memory and CPU time severely limit the sizes
the quantum systems that can be simulated. The required

Hamiltonian of the whole syste®+ E takes the form munication buffers, local variables and the code itself.
The elementary operations performed by the computational
H = Hs+ He + Hsg, (1)  kernel are of the formi¥) <— U |W¥) whereU is a sparse uni-

tary matrix with a very complicated structure (relative he t
whereHs andHg are the system and environment Hamilto- computational basis). Inherent to the problem at hand is tha
nian respectively, antisg describes the interaction between each operatiob affects all elements of the state vecf# in
the system and environment. In what follows, we first degcrib a nontrivial manner. This translates into a complicate@sah
the general theory that leads to the scaling of the decoberenfor accessing memory, which in turn requires a sophistitate
of the systen with the size ofE andS. We then describe MPI communication schemg [26].
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C. Reduced density matrix matrix p in the representation that diagonalizés Clearly,
o(t) is a global measure for the size of the off-diagonal terms
The state of the quantum systedis described by the re- of the reduced density matrix in tr_le_representation thaadia
duced density matrix nalizesHs. If a(t) = 0 the system is in a state of full decoher-
ence (relative to the representation that diagonaligs

Pty =Trep(t), 3)

wherep (t) is the density matrix of the whole systeda- E at D. Scaling property of o

timet andTr g denotes the trace over the degrees of freedom

of the environment. In terms of the expansion coefficients We can prove a scaling property afby assuming that the
c(i, p,t), the matrix elementi, j) of the reduced density ma- final state of the whole system is a stad’, a state that is

trix reads picked uniformly at random from the unit hypersphere in the
o D Hilbert space. The wave function of the whole system reads,
E E
ﬁij(t):TrE z ZC*(Iaqat)C(vavt)ljap><|7q| Ds Dg
pLd=L W)=3 3 CpET)|E), (6)
De ) . izi le ‘ I > ‘ >
=Y c'(i,pt)c(j, p.t). (4)
p=1 Where{ ‘ Ei(s>>} ({ ‘ E,(JE)>}) is the set of eigenvectors bls

We characterize the degree of decoherence of the system lfile), and the real and imaginary parts Gf, are real ran-
dom variables. The derivation of the scaling behavior fol-

Dg-1 Ds lows Ref. ]. In particular Egs. (A8), (A12) and (A23)
oft) = ZI Z fﬁij(t) 27 (5) of Ref. ] are used. We introduce the. following short-
iS1 571 hand notation for the sum over the off-diagonal elements,

ngj Kij = 2:3:512?:51(1—51-):(” for anykij, whereg; is the
wherep;j (t) is the matrix elemertt, j) of the reduced density Kronecker delta function. The expectation value is given by

Ds 2

E(20%) =E ;

De

* .
> GCip
=1

Ds De
= E(C",Ci.oC pC:
i; p:l,zp’:l ( i,p=i.pvi,p J,p’)

Ds De
:; 1% 1((1—513,#)'5 (Ci*,pCJ,PCi,p’CT,d) +0ppE (Ci*,pCJ,PQ,rYCT,d))
I#] p=1p=
2s Oe Ds De 1 De—1 1-4
— E(IC 12 ,%) = —_—S — Ds 7

whereE(-) denotes the expectation value with respect to the For fixedDg > 1, it follows from Eg. [T) that the environ-
probability distribution of the random variabl€p,. Equa- mentdoes not have to be very large for Eg. (8) to hold, which
tion () does not require any condition on the Hamiltonianis in agreement with Ref[ [27]. Nevertheless, the existence
Eq. (1). For example, iHg is composed of two or more en- of an environment is crucial. If there is no environmentnthe
vironments that do not couple to each other, but only interacthe o approaches to a constant (see Appehdix A), even if the
with the system, in Eq{7De is the product of the sizes of whole system is initially in a statex”.
the Hilbert spaces of all the environments. In addition, @&).
does not impose any requirement on the geometry.

From Eq. [(7) it follows that for any fixed value @fs > 1 E. Model and method
andDg > 1, o scales as

1 1 Do 1 1 For testing the predicted scaling of Elgl. (8) we simulate sys-
o~ —1/E(20%) = — S ~ . (8) tems of spin-12 particles. For studying the time evolution
V2 V2V DsDe+1  /2De of the whole systenS-+ E, we consider a general quantum

Therefore, if the size of the syste®is fixed (which is the case spin-1/2 model defined by the Hamiltonian of EqI (1) where

considered in this paper),decreases as'{/Dg for largeDg. Ne-1 Ne
Hence, for a spin-A2 systemo should decrease as™/? for Hs= — Zl Jsst, 9)
IargeNE. i=1 j=I+1a=XYy,z ’



FIG. 1. (Color online) An example of a spin system used in the
simulations. TheNs = 4 system spin-12 particles are colored light
gray (cyan), and thBlg = 18 environment spin-/2 particles are col-
ored dark gray (red). The thin black segments show the cdiomnsc
for a one-dimensional ring, which are the only bonds (irctoas)
present in case | and Il (see text). The thick (green and yvbhdads
show SWBs inHsg. This particular example shows a spin system
with K = 2, whereK denotes the maximum number of subsystem
spins that are connected via SWBs with one environment piick(
white lines, see also Section IV). The medium thick (bluehds
show SWBs irHE.

Ne—1 Ng
He = — 21 Q1019 (10)
2 J_:IZM;Y’Z SLRK
Ns Ng
(11)

Hse = — A%.S9
S i;j;a:;y,z I’JSG )

Here,Sandl denote the spin-/22 operators of the spins of the
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We will see that these two cases show very different scal-
ing properties of the decoherence depending on the initial
state. We also investigate the effects of randomly addirajlsm
world bonds (SWBs) between spins in the system and envi-
ronment and between spins in the environment (sed Fig. 1).

The initial state of the whole systeBH-E is prepared in
two different ways, namely:

“X" We generate Gaussian random
bers {a(va)vb(Jap)} and set C(japat - O)

(a(i.p)  +  ib(i.p)/ /S p(@(. P)+ 21 P)).
Clearly this procedure generates a point on the
hypersphere in thB-dimensional Hilbert space. Alter-
natively, we generate points in the hypercube by using
uniform random numbers in the intervigt1,1]. Our
general conclusions do not depend on the procedure
used (results not shown).

num-

UDUDY: The initial state of the whole system is a
product state of the system and environment. In this
paper (s = 4), we confine the discussion to the state
UDUDY, which means that the first, second, third, and
fourth spin are in the up, down, up, and down state re-
spectively, and the state of the remaining spins i¥’a “
state in thg D/2%)-dimensional Hilbert space. Th¥*
state of the environment is prepared in the same way as
the “X” state of the whole system.

system and the environment, respectively (we use units such

thath andkg are one). The spin componer§$ and|{’ are
related to the Pauli spin matrices, for examf§fds a direct

product of identity matrices and the Pauli spin mat}ixx =

(Ol

1
2

1 0> in positioni of the direct product with X i < Ns.

Ill. SCALING ANALYSISOF o

All simulations are carried out for a systegconsisting
of four spins s = 4) coupled to an environmerii with

For the geometry of the whole system, we focus on the onéqe number of spindle ranging from 2 to 30. The interac-

dimensional ring consisting of a system witg = 4 spin-1/2
particles and an environment will spin-1/2 particles, see

Fig.[. Past simulations have shown that a high ConneCtgléenerated from the range0.2,0.2]. For case Il all non-zero

h%aJ and A7} are equal taJ = —0.15 (isotropic Heisenberg

ity spin-glass type of environment is extremely efficient t
decohere a systerh [16,128-30], so we may expect that t

one-dimensional ring is one of the most difficult geometries

to obtain decoherence in short times.

We assume that the spin-spin interaction strengths of th
systemS are isotropic,Ji‘f’j = J and that only the nearest-
neighbor interaction strengtlﬁa‘f’j andAﬁj are non-zero. Note

that for a ring there are only two bonds with strengﬂ? con-
nectingSandE. We distinguish two cases:

tion strengths) ,; with 1 <i < Ns—1 are always fixed to
J=—0.15. For case | all non-ze@/"; andA'; are randomly

model).

e

A. \Verification of scaling: cases | and Il with “X”

We corroborate the scaling property of Eg. (8) by numeri-

e Case I: The non-zero values Of; andA?; are gener-

ated uniformly at random from the ran¢eQ, Q] and
[-A, Al respectively.

cally simulating the quantum spin system (see Elg. (9) thmoug
(I1)). If we choose the initial state of the whole system to be
an “X” state, then during the time evolution the whole system
will remain in the state X”. Hence, the condition to derive

Eqg. [B) are fulfilled. FiglR2 demonstrates that the numerical

e Case II: All non-zero values of the model parametersresults for both cases | and Il agree with Hg. (8). In par-
are identicaIQf’j = JandA{; = J. This correspondsto ticular the insets in Fid.]2 show that for both cases | and II,
a uniform isotropic Heisen’berg model with interaction In(20) ~ —Ng /2, and thao scales as 1,/Dg even ifNg = 2

strengthy.

andNs = 4 (Ne < Ng).
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FIG. 2. Simulation results foo(t) (see Eq.[(b)) for case | (top) . 1218 24 30
and case Il (bottom) for different sizéé = Ng + 4 of the whole 1
system. The initial state of the whole systemXs {see text). Curves
from top to bottom correspond to system sizes ranging fkbr 6
to N = 34 in steps of 2. The insets show the time-averaged values

of o(t) (pluses) as a function of the sid¢ of the environment,
confirming the theoretical prediction of Eff] (8) (solid ljne
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B. Different initial conditions
FIG. 4. Same as Fifl] 3 for case Il instead of case I. Curves fopm
to bottom correspond to system sizes ranging fivem 16 toN = 34

We investigate the effects of the dynamics by preparing th'f’n steps of 2. The solid line in the inset is a guide to the eyes.

initial state of the whole system such that it is slightlyfelif
ent from “X”. The initial state of the whole system is set to
UDUDY. In contrast to Fid.12, we will see that the two cases |

and Il behave differently. 2 Case Il and UDUDY

We consider the case in which the whole system is de-
scribed by the isotropic Heisenberg mod#| (; = Q ,; =
Aﬁ’m =J). In Fig.[@ we present simulation results for dif-

In Fig.[3, we present the simulation results for case I, theerent system sizeN = Ng + 4 ranging from 16 to 34. From
couplings in the Hamiltonianklg and Hsg are chosen uni- Fig.[4, it is seen that the behavior for case Il is totally efiff
formly at random. The sizBl = Ng + 4 of the whole system ent from that of case | (see Figl 3). In particulart) does
ranges from 6 to 34. An average over the long-time stationnot scale with the dimension of the environment. From the
ary steady-state values of(t) still obeys the scaling prop- present numerical results, we cannot make any conclusions
erty of Eq. [8), showing that decreases as/1/Dg, where  about the limit for largeNe. However ifa(t) approaches zero
De = 2™, If Ne — o, 0 — 0. This suggests that in the ther- asNg — o (see the fifth column of Tabl@ 1) it does so very
modynamical limit the systerf@decoheres completely. slowly.

1. Caseland UDUDY
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FIG. 5. (Color online) Simulation results far(t) for case | forN =
22 andNs = 4. Red solid line: the initial state $DUDY (see text);
green dashed line: the initial state $™(see text).
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FIG. 6. (Color online) Differencé\c between the time-averaged
values ofa(t) for the initial stateUDUDY and “X” of the whole
system (see Tablg 1) as a function of the size of the environie.
Pluses: case [; circles: case Il. The dotted line is a lingdo fihe
data (pluses) for theDUDY initial state, excluding the first three
data points, resulting iho = 0.049/+/Dg.

C. Computational effort

TABLE I. The time average ob(t) in the stationary regime shown

in Figs[2[3 and4.

prediction case | case Il
Ne of Eq. [@) uDbUDY “X" uDbUDY “X"
2| 3397x10°'| 3416x10! 3.375x10°! 3.334x 10t
1.708x 1071 1.746x10°' 1.727x10°%! 1.711x 1071
6| 8554x102| 8834x102 8536x107? 8.492x 1072
8| 4.279x1072| 4598x102 4.282x1072 4.265x 102
10| 2.139x1072| 2286x102 2153x102 2.121x 1072

12| 1.070x1072| 1.149x102 1.071x1072| 1254x102 1.061x102
14| 5349x10°%| 5795x10°° 5357x10°°| 6.756x10° 5.346x10°°
16| 2674x10°%| 2.866x10° 2.678x10°°| 3.997x10° 2.663x10°
18| 1.337x10°%| 1430x10° 1349x10°°| 2694x10° 1.343x10°3
20| 6.686x10°*| 7.065x10* 6.736x10°*| 2204x10°% 6.641x10°*
22| 3.343x10*| 3542x10* 3352x10°*| 1909x10°% 3347x10*
24| 1672x10°*| 1766x10* 1674x10*| 1722x10°% 1658x10°*
26| 8358x107°| 9.005x10° 8368x10°| 1599x10°% 8283x10°°
28| 4.179x10°%| 4551x10° 4151x10°| 1481x10°% 4.176x10°
30| 2089x10°°| 2338x10° 2107x10°| 1379x10°% 2104x10°°

can understand the very different behavior of cases | and Il,
see Figd. 13 and 4, by considering the stationary statesithat a
obtained. Figurgl5 shows that the final values (f) for case |

are very close for both initial stateX" and UDUDY. This
suggests that the final stationary state in case | has proper-
ties similar to those of a stateX”, and hence case | obeys
the scaling property of Eq(8) to a good approximation. The
time-averaged values @f(t) in Figs.[2[3 an@, denoted by
T, are listed in Tabl&ll. From Tablé I, we see that the values
of @ for case Il with an initial staté&J DUDY are very dif-
ferent from those with an initial statex”, and do not show
the scaling property of EqL](8). Thus, the numerical results
suggest that the initial state and the randomness of the inte
action strengths play a very important role in the dynamical
evolution of the decoherence of a system coupled to an envi-
ronment. In particular, for case Il, starting from a staté the
time-averaged values @f(t) scale ass ~ 1//Dg, but such
scaling is not observed for starting from a stdi@U DY

_ In this paper, the largest number of spins_that we _simulated From Tabld]l, it is seen that the values@for case | with
is N = 34. Using the Chebyshev polynomial algorithm andthe initial stateJ DUDY are always slightly larger than those

a large time stept(~ 10m), the N = 34 simulation for the
bottom curves in Fid.J2 (up to a timex 600) took about (B

with the initial state X”. Therefore, it is interesting to exam-
ine the differencé\g between the values @ for the initial

million core hours on 16384 BG/P (IBM Blue Gene P) pro- statesUDUDY and “X”. Figure[8 shows thaf\o for case |
cessors, using 1024 GB of memory. Similarly, it took about 4(red pluses) also scales asDg (dotted line), except for the

million core hours to complete th¢ = 34 curve in Fig[B (up
to a timet ~ 8000).

D. Summary: initial state dependence

For an initial state X” of the whole system the scaling of

first three data points, which is probably due to large fluctua
tions in the calculations for these small system sizes. &her
fore, the dynamics of case | will drive the system to a state
“X” only when the environment approaches infinity. Figure 6
also shows thahg for case Il (circles) is almost constant for
system size$ ranging from 16 to 34. Hence, it is unlikely
that case Il with the initial statd DU DY will decohere, even

as given by Eq[{8), works extremely well for both case | andif the simulations could be performed for much longer times

case Il, as seen in Figl. 2. When the initial statd BU DY, we

and for larger system sizes.
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IV. CONNECTIVITY: RING WITH SMALL WORLD not have a dramatic effect an(t) and has very little effect at
BONDS early times (see Fif] 8a).
Just as for case I, it is seen that adding a few SWBs ex-

We investigate the effects of adding small world bondsclusively toHsg for a spin configuration witiK = 1 signif-
(SWBs) to the Hamiltonianidsg or/andHg for both case land  icantly decreases the time to approach the steady state, and
case Il (see Fidl]1). To analyze the addition of SWBsige  that the SWBs irHsg also lead to a decrease ant) for a
we distinguish between spin systems with< 2 andK >2,  fixed time even at early times (see Fig. 8b). For spin con-
whereK denotes the maximum number of subsystem spindigurations withK = 2 case | and case Il seem to have simi-
that are connected via SWBs with one environment spin. Thigr decoherence properties if SWBs are added exclusively to
distinction is motivated by the distinct decoherence ottera  Hsk, as seen by comparing Fig. 7c and Eig. 8c. However, con-
istics for systems withk < 2 andK > 2 for case | (see next necting in addition each pair of non-neighboring environime
subsection). An example of a spin configuartion With= 2 Spins by isotropic SWBs drives the curves very far away from
is shown in Fig[L. In particular, we are interested in whethe the value ofo(t) for an initial state X” (see Fig[8d).
systems with SWBs will exhibit the same scaling, and whether
they will decohere from an initial state faster than eithfehe
cases studied thus far. The addition of many SWBs changes C. Summary: SWBs
the graph from a one-dimensional ring to a graph with equal
bond lengths that can only be embedded in high dimensions. Adding SWBs toHsg or/and toHg changes the rate of de-
The initial states are alway$DUDY. Furthermore, in order coherence as seen by the approach to the asymptotic value for
not to change too many parameters simultaneously we start af(t). In case I, adding isotropic SWBs tésg or He effec-
simulations from the same staté™of the environment. Fur-  tively alters some spin-spin correlations leading to a ease
thermore, after choosing the random location (and couplingin the steady-state value of(t). However, this decrease is
Q% andA“ for case I) of the first SWB we preserve this bond not sufficient to reach the steady-state value if that com-
when adding additional SWBs. We will see that case | angplies with the prediction Eq[18). Adding isotropic SWBs to
case Il still behave very differently. Hse and connecting in addition each pair of non-neighboring

environment spins by isotropic SWBs drives the curves very
far away from the value ofr(t) for an initial state X”, even

A. Caseland SWBs much further away than the steady-state value for a ring-with
out SWBs. In contrast to case | systems vidtk: 2 andK > 2

For investigating the universality of the final valueaft) ~ do not behave significantly different.
we add SWBs (random couplings in the inter{aD.2,0.2]) Comparing case Il with case | fd < 2, we conclude
in the HamiltoniarHsg or/andHg for case I, and perform sim-  that without introducing the randomness in they, z com-
ulations forN = 24 with Ns = 4. From Fig[J¥a, we see that ponents of the spin-spin couplings, the dynamics canneedri
adding more and more SWBs ke speeds up the decoher- the system to decoherence if the initial state is differeornf
ence process and that the final valueadf) corresponds to  a state X”. Increasing the complexity of the environment by
the one given by Eq[18). As seen in the inset, adding SWB&dding isotropic SWBs between all non-neighboring environ
to He has no noticeable effect on the early time behavior ofment spins does not help in this respect, even on the contrary
o(t). However, for case | and configurations wiKh> 2, increasing

Adding SWBs exclusively toHse speeds up the deco- the complexity of the environment by adding SWBs between
herence process even further and even at early times cleall pairs of non-neighboring environment spins allows tie d
changes ino(t) can be observed (see Fi@$. 7b, c). For spinnamics to drive the system to decoherence.
configurations withK = 1, o(t) reaches the value given by  For both case | and case Il, adding SWBsHge andHg
Eqg. (8) for sufficiently long times, as can be seen from[Hig. 7bseparately speeds up the decoherence in that it evolves more
However, for configurations witk = 2 (see Figld7c) oK >2  quickly to a stationary state. The asymptotic value dit)
(results not showny (t) does not obey the scaling property is approached much faster when adding SWBHdd4pinstead
Eqg. (8). Restoring this scaling property seems to requir®f Hg, and the SWBs irHsg also affecto(t) at early times.
an environment that is much more complex than the oneThus a random SWB coupling to the system kige is the
dimensional one as indicated by Hig. 7d in which we presentnost effective way to decrease the time for decoherence.
simulation results for the case that SWBs between all non-
neighboring environment spins have been added.

V. RANDOMNESS IN THE ENVIRONMENT

B. Caselland SWBs Sectior IIIA shows that for the initial staté&" the scaling
predicted by Eq.[{8) is confirmed both for case | and case Il
For case I, isotropic SWBs are addedHgg or/andHe.  (see Fig[R). However, secti@n Il B shows that starting from
From Fig.[8, it is clear that even for long times none of thethe initial statdJ DUDY this scaling is approached ag\/Dg
curves approach the dotted horizontal line, the value (@f for case | (see Fig§l 3 andl 6) but not for case Il (see Figs. 4
for an initial state X”. Adding SWBs exclusively tdle does  and®). Section1V shows that adding SWBs in case Il does not
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FIG. 7. (Color online) Simulation results @f(t) for case | withN = 24 andNs = 4 with SWBs added. The initial state sDUDY. The
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environment spins. Green long-dashed line: one SWB; ordogied line: two SWBs; purple short-dashed line: four SWise dotted-
dashed line: eight SWBs. (b) Randomly added SWBs betweesygtem and environment spins such tkat 1. Green long-dashed line:
one SWB; orange dotted line: two SWBs; purple short-dasimed four SWBs; blue dotted-dashed line: eight SWBs. (c)d®anly added
SWBs between the system and environment spins sucKtha?. Green long-dashed line: two SWBs; orange dotted lina: 8WBs; purple
short-dashed line: six SWBs; blue dotted-dashed line:tesykBs. (d) Same as (c) except that each pair of non-neighdp@mvironment
spins is connected by a SWB. Insets: time evolution for stimes.

significantly change the long-time behavioraft) approach- inset of Fig[®. The inset shows that even one random bond
ing the predicted value of Ed.](8). Therefore the naturakgue suffices to recover the asymptotic value Ed. (8). However the
tion to ask is how much randomness is requiredddr) to  time scale to reach the asymptotic valuegofan become ex-
obey the scaling relation Eq.](8). To answer this questian, wtremely long. We leave the question of how fast the approach
start from the isotropic Heisenberg ring (case Il) and repla to the predicted value af is for future study.
ﬁgﬁ&gtﬁg;t'&r;ztgn%ﬁ)Of a few randomly chosen bonds by For understanding the behavior@ft) in case Il with ran-
L] ' ' domness, we investigate the individual components of the re

Figure[® presents the simulation results &t) by intro-  duced density matrixo for the ring system. We study the
ducing 1, 2, 4, 6 and 8 random bonds in the environmenaddition of one, two, up to eight randomly replaced bonds in
HamiltonianHg of Eq. (10). The interaction strengtlﬁﬁ“ the environment. Recall that once the position for one rando
of these randomly selected bonds are drawn randomly frorbond is chosen, this is also one of the random bonds when
a uniform distribution in[—0.2,0.2]. Furthermore, the ran- there are two or more random bonds. Similarly, the locations
domly selected bond for the case with 1 random bond is alsof the random positions for a large number of random bonds
a random bond for the case with 2 and more randomly choseinclude the same positions and strengths as for a smaller num
bonds, thereby not changing too many parameters at a timéer of random bonds. Furthermore, the same initial stéte “
Simulations up to time = 6000 show that introducing 4, 6 of the environment is chosen for all simulations. We stud-
and 8 random bonds leads the system to relax to the predictéed the effect of varying the positions of the randomly chose
value ofo (see Eq.[(B)). For times up te= 6000 the effect of bonds and of different initial state¥™ for the environment
one or two random bonds is not apparent. Therefore for thesier a couple systems and did not find significant changes in
two cases we performed extremely long runs as shown in theur observations.
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chosen SWBs between the system and environment spins satdd th 2. Green long-dashed line: two SWBs; orange dotted liner fou
SWBSs; purple short-dashed line: six SWBs; blue dotted-elddime: eight SWBs. (d) Same as (c) except that each pairmietghboring
environment spins is connected by a SWB. Insets: time geoldior short times.

Figure[10 presents the results of the time evolution of the VI. CONCLUSIONS AND DISCUSSION

absolute valuép;j| of the individual components of the re-

duced density matrix. For completeness we show both the The main theoretical result of the current paper is Eq. (8) fo
diagonal components and the off-diagonal components. Fighe decoherence of a quantum sys@ooupled to a quantum
ure[TI0 shows that most of the 120 off-diagonal componentgnyironmen€. For studying decoherence we examog),
quickly relax to a small value (114 black lines in Figl 10 (b)- which is the square root of the sum of all the off-diagonal
(e)). The slowest decayingij| are plotted in red. There glements of the reduced density matgixfor Sin the basis

are six such components. In the steady statépgll oscil-  that diagonalizes the Hamiltoniads of the systens. We find
late but have nearly the same time-averaged value, in agregsee also Eq[{8)) that

ment with the mean-field-type argument given in Appefndix B.
Thus, only a fewg;j | are responsible for the lack of scaling o~ 1 <1_ i) (12)
of o in case Il when starting from the initial stateDU DY, v/2Dg 2Dg )’

and also for the long times required to approach the preatlicte

. where the reduced density matpxfor Sis aDs x Dg matrix
\r/:rl::j%r?]f tI)Ec?n(E) ofg(t) in the case that there are one or two while the density matrix of the whole syste®a-E is aD x D

matrix with D = DsDg. ThusDg does not have to be very
large in order for the predicted scaling to hold, in partcul
the scaling requireBg > 1 > Dgl. In addition the scaling
requires thaB+ E is driven from an initial wave function to-
ward a steady state which is well described by a state which
we called X"
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FIG. 10. (Color online) Time evolution of the componepis of the
reduced density matrix of the system with= 26 andNs = 4. The

. . . initial state isUDUDY. (a) Case Il. Starting from case I, 1 (b), 2
We have performed large-scale real-time simulations of th?c), 4 (d), 6 () and 8 (f) random bonds are introducetiin Blue

tlme—dependgnt ,SChrOd'”gef equatlonﬁ@,rsplng in the SYS” Jines: diagonal componentg; |; red lines: all 6 slowly decaying
tem and\e spins in the environment. We have simulated spin-components foff; | for one random bond; black lines: all other 114
1/2 SyStemS WithN = NS"‘ NE up toN = 34, all with NS: 4. Off-diagona] Componen@ij |

Starting from a stateX” for S+ E the simulations agree very

well with the scaling prediction Eq_{lL2), as shown in [F. 2.

In Appendix @ we demonstrate that in this case not only the

off-diagonal elements gb obey a scaling relation but also its be required to approach the sta® s due to only a few off-
diagonal elements obey a scaling relation, although ardiffe  diagonal elements g, as seen in Fig.10. We find that the

one. approach to the statZ" can be sped up by adding random-
Therefore as long as the dynamics drives the initial state t&ess tcE (Figs.[9 and10).
a state Z” which has similar properties a¥” the scaling re- What do our results say about the approach to the quan-

lation Eq. [I2) should hold. The next step is to examine undetum canonical ensemble? The canonical ensemble is given by
what conditions our test quantum model is driven to the statéhe diagonal elements of the reduced density mairikthe

“Z”, and study the time scale needed to relax from an initialoff-diagonal elements (as measureddiy)) can be neglected
state to the statez”. For the one-dimensional quantum spin- [1,[27]. As long a€ has a finite Hilbert spad@e our scaling

1/2 ring we find that homogeneous couplings do not lead taesults can be used to argue that in a strict sense, the system
an evolution to the stateZ” (Fig. H)), and hence the scaling will not be in the canonical state unlelBg — c. However, if

as J//Dg is not observed. This conclusion is not modified the canonical distribution is to be a good approximation for
if some randomly chosen homogeneous small world bondsome temperatures up to some chosen maximum energy
are added (Fid.]8). Also systems with random couplings andEnoid > 0, then this requires that exp Enoia/ksT) >> o which
random small world bonds between system and environmergives for our spin-12 systemkgT >> 2Epqq/ [NeIn(2)]. For
spins such that the maximum number of system spins that irthis argumentto hold in the canonical distribution the gies
teract with one environment spin is two or larger do not egolv are taken to be positive values above the ground state energy
to a state “Z” (Fig[¥c). In this case, the environment reggiir This lack of thermalization at low temperatures for smadi-sy
amore complex connectivity than the simple one-dimensionaems is supported by simulations in Ref.J[17].

one in order to observe the scaling as/De (Fig.[4d). There- What do our results say about trying to prolong the time
fore, although we find that some randomness in the interactioto decoherence in order to build practical quantum enaoypti
strengths irE or betweerS andE the dynamics is very im- or quantum computational devices? The important thing is
portant to drive the whole system toward the staté &s seen to ensure that the system is not driven toward the state “

in Figs.[3[®[¥a,b, arld 9 it is not always sufficient. Moreoveror at least that it takes a very long time to approach the state
it may take a long time to evolve toward the staf& if there ~ “Z”. This can be achieved by changing the Hamiltonian of
is only a little randomness (Fig] 9) or if the environménis  the systemH = Hs+ He + Hsg, such that it has very small
large (theN = 34 results of Figl13). The long time that may randomness particularly in the coupling between the system



11

and the environmentisg. Alternatively extrapolating from an algorithm that does not have computer memory constraints
Fig.[T0 if one can devise an experimental procedure, for extimited by the size oDg [34,[3%]. We are working to extend
ample a time-dependent procedure, to keep even a few of thhis algorithm to other types of environment and for moreitha
off-diagonal elements b large then the scaling prediction one spin in the systel@

Eq. (12) for the decoherence can be avoided, at least for rea-
sonable timescales.

The scaling of Eq.[(J2) can be contrasted with the pre-
dicted scaling of the Hilbert space variant of a whole sys-
tem which should be proportional @ + 1)~ for the ex-
pectation value of a local operatér [31]. The results of the Forcomparison of the scaling ofit) for the cases with and
current research are also relevant for methodologies far me Without an environment, we derive the scaling for the case of
suring finite-temperature dynamical correlatidng [32heitt N0 environment. In the energy basisof the (system, which
performing the complete TDSE evolution of the whole sys-iS now the whole system) Hamiltoniat, the density matrix
tem. has elements

We leave as future work the coupling between a system
composed of spin-/2 objects (qubits) and an environmént pij(t) =ci (t)C}r(t) : (A1)
composed of harmonic oscillators. In particular, we have re
cently been able to build on exact calculations of a singile sp We use from Ref/[19] the equations (A.12) and (A.23). The
coupled to specific types of spin environment [33] to deviseexpectation value is

Appendix A: Scaling without an environment

) Ds Ds 2 Ds Ds 2
E(20%) =E (;J;\q(t)cj(m ) _i;;EOci(t)cj(tﬂ )
— Ds(Ds— 1)E (|ci(t)|2|cj(t)|2) —1- D52+1 - g;i

(A2)

The final scaling result for the quantitythat we measure is

1 1 /Ds—1 1 1 1 1 3
o~—=4/E(202) = =/ =—=>— = —— + - + +eee A3
V2 (20%) V2V Ds+1 2 +2Dg 2v2D2 2y2D3 8y/2D4 A3
S S S

Therefore without an environmerd, approaches a constant sumption that
as the size of the system (which is the whole system) grows.
This also means that for the statX™ if all off-diagonal 202

elements are the same they will have a sizelmf(t)|” = &= Ds(Ds—1) " (B1)

1/Ds(Ds— 1) ~ 1/D% while if all the diagonal elements are
equal (corresponding to infinite temperatu||;mi)(t)|2 =1/Dg
since Trp(t) = 1. We have performed simulations (results not
shown) to ensure that for the case without an environraent
obeys the scaling relation of E.(A3) and it does.

We introduce the matrixd with all its elements having the
value 1, the matriD which is the diagonal matrix composed
of the diagonal elements @f, and the identity matrix. Note
thatJ? = DsJ. The ‘mean-field-type’ assumption then reads

p=D+el—cel, (B2)

which as seen from the graphs in Hig] 10 should be a reason-
Appendix B: Mean-field-like reduced density matrix able assumption in the steady state regime. We will use the
relationships

We make a connection betweenand the quantum purity Tr(D)=1,
Z=Tr ([))2 . We assume a ‘mean-field-type’ structure for Tr (D2) <1,
the reduced density matrix, namely we assume that all off- Tr(l)=Tr(J) =Ds,
diagonal elements have the same size|n our simulations Tr(Dg) = TrZ(JD) =1
we find that in the energy basis the imaginary part of the off- Tr(J%) = Dg, (B3)

diagonal elements are very small, which validates our Hypot
esis. However, the signs of the real part of the off-diagonal
elements are not the same, which brings into question our
‘mean-field-like’ assumption. Nevertheless, we make the as £ =Tr ([)2)

ith the first relationship being a consequence of the tréice o
density matrix being equal to unity. Then one has that
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=Tr ((D +el—el )2) If the system relaxes to its canonical distribution bé(t) and
B 2 2 2 2.2 o(t) are expected to vanisb(t) converging to the effective
=Tr (D2 - 2£D2+ €°l + eDJ+ €JD — 26°] + £2J°) inverse temperatuiie
=Tr(D%)+20
-1

—Tr(D?) + —> U ,

De + & The numerical simulations of which we present the results
T (D2 Os correspond to those used to make Eig. 2. The initial state for

r( ) those simulations isX”. We analyze the diagonal elements,

1

i

"Ds DeDs DeDZ

).

(B4)

instead of the off-diagonal elements, of the reduced dgnsit
matrix and calculate the quantiéy(t). In Fig.[11, we present

In the canonical ensemble the diagonal elements of the réhe t|me_-averaged valu of 6(t)_for each syst_em Size. I_t IS
duced density matrix are related to the terms in the canbnicdnteresting to see that the quantyalso has a kind of scaling
partition function, in particulap; = e % /Z [16,[17]. There-

fore we have a connection between the quantum pu#itgnd 1oh =
how close the system is to a canonical ensemble. In the steady
state this difference is of the order of . » @*m

With the same ‘mean-field-like’ assumption forin the 10 .
steady state one can look at corrections to the von Neumann -
entropy of the systemy” = —Tr (pInp). However, we do not 10°
find the final result too enlightening. Tw

10t ..
N
.
Appendix C: Diagonal elements of the reduced density matrix 105 & = -
In the main text, we investigated the scaling property of the ° 10 1 ilo 2 % %

off-diagonal elements of the reduced density matrix of a sys

tem coupled to an environment. For being complete in th%IG. 11. Simulation results for the time-averaged vaduef o(t)

contents, we present some numerical and analytical resuligee £q.[[CL)) for case | (bullets) and case Il (squares)iftereint
concerning the diagonal elements. _sizesN of the whole system. The initial state of the whole system is
In general, based on the fact that the system decoheres, i:6¢ (see text). The dotted line is/4/2N.

the off-diagonal elements of the reduced density matrix ap-
proach zero, we expect that the diagonal elements take (ap-
proach to) the form of the canonical distribution eéxBE;)
where3 = 1/kgT with T denoting the temperature arkg
Boltzmann’s constant, which is taken to be one in this paper,
and whereE;'s denote the eigenvaluesdg [16,[17]. The dif-
ference between the diagonal elemegt$t) and the canoni-

R < . property. As the whole system sikeincreasesd decreases
cal distribution is conveniently characterized by

as 1/v/D, whereD = 2N,

Ds Ds 2

pi(t) — e PUE eh(t)Ei) ,  (C1)
Z( /2
with a fitting inverse temperature

_ Si<iEzgInpi ) —Inpj; (]/(E; -

o(t) = In fact the fitting inverse temperatubgt) is very close to
zero for reasonablely largé: (data not shown). The canon-
ical distribution ofSatb = 0 is represented by a diagonal
density matrix with elements/Ds, whereDg = 2Ns. Then,

E) we are able to derive the scaling property &oas we did to

b(t) (C2) obtain Eq.[(¥). The expectation valuedfs given by
YicjEAE L |
@ -e(5Saco i )-5 5 eekion)-2
E =E C'Cp——| | = E(IGn| Gyl ) — =
i; &P P Ds izi pzl.Zp’:l e Ds
Ds De 1
- Zi lZ 1((1_ Spp) E (‘Ci-,plz Cip 2) +06ppE (!%!4)) " Ds
1= =1,  —
Ds P DE

1 2 1
; i; p:l,zp/:l <(l_ %p) DD+1) % D(D+ 1>> ~ Ds
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D+l 1 Ds-1 1

D+1 Ds Ds D+1°

(C3)

From Eq. [CB), we havé ~ 1//D for Ds > 1 andDg > 1. ACKNOWLEDGEMENTS
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