
PH2213 : Examples from Chapter 10 : Rotational Motion

Key Concepts

Methods in this chapter give us tools for analyzing rotational motion. They are basically the
rotational analogs of what we did in earlier chapters on linear motion.

Translational motion involved vector position r⃗, velocity v⃗ and acceleration a⃗ and we derived nu-
merous ‘equations of motion’ relating various combinations of these (and the time t). Similarly,
the complete description of angular motion also involves vectors. An angle of 30o is meaningless
without knowing what axis that angle is a rotation about. So the axis (which could be pointing

anywhere, and is thus a 3-D vector) is part of the concept of angular position θ⃗, angular velocity
ω⃗ and angular acceleration α⃗. This can get very complicated, so we restrict ourselves to rotations
that are confined to a plane and usually define the axis of rotation to be the Z axis.

Key Equations

For an object rotating in the XY plane (i.e. rotating about the Z axis), the angle, angular speed,
and angular acceleration are defined to be about the Z axis with the convention that the positive
direction is counter-clockwise about that axis.

NOTE: the standard unit for doing calculations involving rotation is the radian. One complete
rotation is 2π rad so 2π rad = 360o which allows to convert between them as needed.

Angular equivalents to some common 1-D equations of
motion:
ω = dθ/dt
α = dω/dt
θ = θo + ωot+

1
2
αt2

ω = ωo + αt
ω2 = ω2

o + 2α(∆θ)

Relating Linear and Angular Kinematics

v = rω

atan = dv/dt = rdω/dt = rα

arad = v2/r = rω2

Common Errors

• for a collection of objects, I =
∑

mir
2
i where ri is the radius of the circle that object will move

in when the overall collection rotates, so it’s the perpendicular distance from the object to
the axis of rotation

• units: all the rotational equations of motions imply units of radians, (rad/s, rad/s2, etc)

• conversions between period, RPM, RPS, rad/s

• determining ϕ : angle between r⃗ and F⃗

• sign of torque



Moment of Inertia and rotational kinetic energy

If an object is rotating, every piece of it is rotating at
the same ω even though each piece has different linear
speeds. We can accumulate all the kinetic energies in
each moving piece though and show that: K = 1

2
Iω2

where: I =
∑

mir
2
i for collections of point masses, or

I =
∫
r2dm for solid objects.

See page 260 for the mo-
ments of inertia of some ob-
jects that have common ge-
ometric shapes.

Parallel Axis Theorem : If we compute the value of I for some object rotating about an axis
through it’s center of mass and now desire to rotate it about some other axis - but one that is
parallel to the original one and just shifted some distance d to the side, we don’t need to recompute
I from scratch. The new moment of inertia I is related to the original one Icm by: I = Icm +Md2

where M is the total mass of the object.

Gravitational Potential Energy : for an extended object, we can add up the Ug of each little
dm element of the object and show that Ug = Mgycm : that is, it is the same as if all the mass were
located at the center of mass of the object.

Torque : A force F⃗ applied at a location r⃗ from
the axis of rotation O produces a torque of τ⃗ =
r⃗ × F⃗ . The magnitude will be |τ⃗ | = rF sinϕ;
direction or sign from right-hand rule. (See figure
at right for alternate ways to compute.)

Equilibrium:
∑

τ⃗ = 0

Rotational Versions of Newton’s Laws, energy,
and power:

∑
τ⃗ = Iα⃗ W = τ⃗ ·θ⃗ P = τ⃗ ·ω⃗

Torque due to weight of an extended object: acts
as if all the mass were located at the CM of the
object.



1. Some Random Short Examples

• What is the angular speed of the earth rotating about its axis?

The earth makes one complete rotation in about 24 hours, so ω = ∆θ/∆t = (2π rad)/(1 day) =
(2π rad)/(86400 s) = 7.272× 10−5 rad/s

• If an object makes 1 revolution per second (1 RPS), what angular speed does that rep-
resent?

One complete revolution means the object has turned through and angle of 2π rad so
ω = ∆θ/∆t = (2π rad)/(1 s) = 2π rad/s

This gives us a conversion factor: 1 RPS = 2π rad/s

• If an object makes 1 revolution per minute (1 RPM), what angular speed does that
represent?

One complete revolution means the object has turned through and angle of 2π rad so
ω = ∆θ/∆t = (2π rad)/(60 s) = π/30 rad/s or about 0.1047 rad/s

This gives us the conversion factors: 1 RPM = 0.1047 rad/s or 1 rad/s = 9.549 RPM

• A common way of describing rotational motion is to use the period of rotation T . (Be
careful not to confuse this with the use of the symbol T for tension...). So T would
present the number of seconds for an object to make one complete rotation, which is an
angle of 2π rad so ω = ∆θ/∆t = 2π/T or: ω = 2π/T and T = 2π/ω.

T represents the seconds per rotation. The frequency f is the rotations per second and
is the inverse of T : i.e. f = 1/T or T = 1/f .

The relationships in the last three examples give us a way of converting ω into something that
has more physical meaning.



2. Merry-go-round : Basic Definitions

Suppose we have a merry-go-round that makes one revolu-
tion in 10 seconds. Find the angular speed, and the linear
speed and radial acceleration at various points out from the
center.

The period of rotation of this merry-go-round is:
T = 10 s, which means that the angular speed is:
ω = 2π/T = 0.6283 rad/s.

(a) Standing 1 meter from the central axis of rotation (r = 1 m)

The linear speed at this point will be v = rω = (1 m)(0.6283 rad/s) = 0.6283 m/s. A person
standing at this point is moving in a circle of radius 1 m, moving at a tangential speed of
0.6283 m/s, which implies that the person is undergoing a radial acceleration of ac = v2/r =
(0.6283 m/s)2/(1 m) = 0.3948 m/s2. Since v = rω, we can also write this as ac = (rω)2/r
or just ac = rω2. Using that equation, at r = 1 m we have ac = (1.0 m)(0.6283 rad/s)2 =
0.3948 m/s2 (same result of course).

(b) Standing 3 meters from the central axis of rotation (r = 3 m)

Let’s say the outer radius of the merry-go-round is 3 meters and the person is standing right
out there on the edge.

The linear speed at this point is now v = rω = (3 m)(0.6283 rad/s) = 1.885 m/s. This
person is moving in a circle of radius r = 3 m, moving at a tangential speed of 1.885 m/s, so
their radial acceleration is ac = v2/r = (1.885 m/s)2/(3 m) = 1.184 m/s2. Alternately, since
ac = rω2 and the ω value is the same at every point on the merry-go-round, we see that ac is
directly proportional to r. Compared to part (a), the person is standing 3 times further out
from the center, so should have an acceleration exactly 3 times what we got in part (a) or
3× 0.3948 m/s2 which is 1.184 m/s2.

If there is an acceleration, there must be a force to provide it. In this case it would be the
static friction between the person’s shoes and the floor of the merry-go-round, which we’ll
investigate in the next problem.



3. Merry-go-round and Friction

Suppose it’s raining and the floor of the merry-go-round is
wet. We want people to be able to stand on the (rotating)
floor without slipping. We saw in the previous example
that the farther out an object is located, the higher the
angular acceleration, but that means there must be a force
available to provide that acceleration. How fast can we run
the merry-go-round in order to guarantee that nobody slips
and falls?

Suppose the coefficient of static friction between typical shoes and the (wet) floor of the
merry-go-round is 0.4

We saw in the previous problem that ac goes up linearly with r. A point near the edge has a
higher acceleration than a point near the center, so will need more force to stay in place, but
the amount of force available is limited so eventually people could start slipping.

Here, we have a person standing at some distance r from the central axis of rotation. They are
moving in a circle, so are undergoing a radial acceleration of ac = v2/r or more conveniently
here ac = rω2.

The force needed to create this acceleration will be F = ma = mac = mrω2. This force must
be coming from the static friction between the shoes and the floor. That has a max value,
though, of fs,max = µsn. What is the normal force here? Looking in the vertical direction, we
have the person of mass m standing on a horizontal floor, so

∑
Fy = 0 implies that n−mg = 0

or n = mg. Thus fs,max = µsn = µsmg.

We determined that the force needs to be F = mrω2 and now we know how much force we
have available, so setting those equal: µsmg = mrω2 . Conveniently, the mass cancels out

leaving: ω2 = µsg/r, which we can write as ω =
√
µsg/r. We are interested in the period of

the merry-go-round and T = 2π/ω so finally T = 2π
√
r/(µsg)

Note what this is telling us: as the person stands closer to the outer edge of the floor, that
increases the value of r which increases the ‘safe’ period of rotation T . For people near the
center (small r), T can be very small (i.e. the MGR can spin like crazy and they won’t slip),
but for people near the edge, T needs to be longer (spinning more slowly). The person at the
outer edge is what’s limiting the period: they’ll be the first to start slipping.

If the radius of our merry-go-round is r = 3 m, that means our T is limited to be no smaller

than T = 2π
√
r/(µsg) = 2π

√
3.0

0.4×9.81
= 5.49 s (corresponding to ω = 2π/T = 1.144 rad/s)

As long as the merry-go-round takes at least 5.49 s to make one complete revolution, nobody
should slip, no matter where they’re standing.

What is the radial acceleration at the outer edge at this value of ω? arad = rω2 = (3)(1.144)2 =
3.93 m/s2. If the person has a mass of 80 kg, that means the force needed to make the person
go in this circle will be F = ma = (80)(3.93) = 314 N . How much force can static friction
provide? fs,max = µsn = µsmg = (0.4)(80)(9.81) = 314 N , which is just exactly enough.



4. Merry-go-round (C)

Suppose we have the same merry-go-round in the previous
problem and we want to run it at the just-barely-safe speed
we found in the previous problem, representing a period of
T = 5.49 s. Initially it’s at rest, and we turn it on and start
spinning it up. Suppose it takes 5 seconds to get up to full
speed. Will people still be able to stand or will they slip
and fall?

In the previous problem, we found that we could spin the merry-go-round with a period of
5.49 s without anyone slipping, even right at the outer edge.

That’s fine, but we need to spin the merry-go-round up from rest initially. In the previous
problems, we saw that a given angular speed ω translated into a radial acceleration but in the
scenario here, we have introduced a tangential acceleration as well.

If the MGR starts from rest and (angularly) accelerates uniformly, we can write the angular
speed as ω = ωo + αt. Here, we’re starting from rest so ωo = 0 and we’re spinning up to ω =
2π/T = (2)(π)/(5.49) = 1.144 rad/s in a time interval of 5 seconds, so: (1.144) = (0)+(α)(5)
and α = 0.2288 rad/s2.

An angular acceleration of α is related to the tangential acceleration atan by: atan = rα so
that means in this case we have atan = (3.0 m)(0.2288 rad/s2) = 0.6864 m/s2.

We have two components of (linear) acceleration now: a tangential acceleration of 0.6864m/s2

and a radial acceleration that depends on ω : arad = v2/r = rω2. Initially, ω = 0 so we only
have the tangential acceleration we just calculated, but as the MGR spins up, that radial
component gets larger and larger. Once the MGR has fully spun up, ω = 1.144 rad/s2 which
represents a (linear) radial acceleration of arad = rω2 = (3.0 m)(1.144 rad/s2) = 3.93 m/s2.

These two perpendicular components represent an overall acceleration of magnitude:

a =
√
a2rad + a2tan =

√
(3.93)2 + (0.6864)2 = 3.99 m/s2. Using the same 80 kg person in the

previous example, this acceleration requires a force of F = ma = (80 kg)(3.99 m/s2) = 319 N
to maintain, but we also found that we only have 314 N of static friction available, so the
person will slip.

During this spin-up phase (and similarly during ‘braking’ when the MGR slows down to a
stop), the acceleration of the person is actually a bit larger than it is when the MGR is turning
around in a circle normally. In the previous problem, we found that static friction can only
provide enough force to allow the person to have an acceleration of 3.93 m/s2, so during the
spin-up and braking intervals, the person standing right on the edge can still slip.



5. Moment of Inertia and Energy in Rotating Objects: (A)

Suppose we have an object (a mobile, maybe) formed from four point
masses located at the corners of a rectangle as shown in the figure.
The rods connecting the four masses are assumed to be massless.
Define the origin of coordinates to be the location of ball 1, with
the +X axis pointing to the right, and the +Y axis pointing towards
the top of the paper (a) Find the location of the center of mass, and
(b) find the moment of inertia of this object if we want to rotate it
about the Y axis? (I.e., the axis shown by the dotted line in the
figure, which runs through the 3 kg and 1 kg masses.)

Recall, the center of mass for a collection of objects is defined as: Xcm = (
∑

mixi)/M and
Ycm = (

∑
miyi)/M , where M =

∑
mi

The moment of inertia for a set of point masses is given by I =
∑

mir
2
i , where mi is the

mass of each object, and ri is the radius of the circle that object will traverse as it rotates.
Basically, ri is the perpendicular distance from the object and the rotation axis.

Let’s say ball 1 is the one with a mass of 1 kg, ball 2 is the one with a mass of 2 kg, ball 3
has a mass of 3 kg, and ball 4 has a mass of 4 kg.

Then ball 1 is located right on the axis of rotation, so r1 = 0. Ditto for ball 3. Ball 2 is
located 2 meters away from the axis (ditto ball 4), so r2 = r4 = 2 m.

It’s convenient to organize the calculations in a table:

i mi xi yi mixi miyi ri r2i mir
2
i

1 1.0 0 0 0 0 0 0 0
2 2.0 2 0 4 0 2 4 8
3 3.0 0 4 0 12 0 0 0
4 4.0 2 4 8 16 2 4 16∑

mi = 10
∑

mixi = 12
∑

miyi = 28
∑

mir
2
i = 24

Looking at the first row, we have a mass of 1 kg located at x = 0, y = 0. The next column is
the mass multiplied by the x coordinate, followed by the mass multiplied by the y coordinate
(representing terms we will need in computing the center of mass). The next column is the
distance of this point from the axis of rotation, followed by the square of that distance and
finally the mass times that squared distance (representing the terms we will need in computing
the moment of inertia). To fill in the ri column, we need to draw a line directly from each
point mass to the axis about which it will be rotating - i.e. a line that is perpendicular to
that axis, since when the mass rotates about that axis, that is the radius of the circle that
mass will be moving in.

The last row is the sums we’ll need:

Xcm = (
∑

mixi)/(
∑

mi) = 12/10 = 1.20 m
Ycm = (

∑
miyi)/(

∑
mi) = 28/10 = 2.80 m

I =
∑

mir
2
i = 24 kg m2.



6. Moment of Inertia and Energy in Rotating Objects: (B)

(Review the previous problem first.) Suppose we have this
same mobile but now we want to compute its moment of
inertia about an axis through the X center of mass, parallel
to the Y axis. In the previous problem, we found thatXcm =
1.2 m.

Direct Approach : The moment of inertia for a collection of point masses is defined to
be I =

∑
mir

2
i where r is the distance from each object to the axis about which it is now

rotating. The coordinates and masses are all the same as before, but we’re rotating about a
different axis now, so all the ri values are different. For example, ball 1 is located at x = 0
but the axis we’re rotating about is at x = 1.2 m so the distance from that ball to the axis is
now r1 = 1.2 m. (Ditto for number 3). Ball 2 is located at x = 2 and the axis is at x = 1.2
which means it’s now spinning around in a circle about that axis with a radius of 0.8 m.
(Ditto for ball 4.)

i mi xi yi ri r2i mir
2
i

1 1.0 0 0 1.2 1.44 1.44
2 2.0 2 0 0.8 0.64 1.28
3 3.0 0 4 1.2 1.44 4.32
4 4.0 2 4 0.8 0.64 2.56∑

mi = 10
∑

mir
2
i = 9.6

Using the Parallel Axis Theorem : We can also short-cut this calculation using the
parallel-axis theorem: I = Icm + Md2, which states that if we have the moment of inertia
about an axis through the center of mass and we want to recompute it about some other axis
that’s shifted parallel to that original axis by a distance d we can do so easily. What we’re
calculating in this problem is the moment of inertia about an axis through through the X
center of mass, and what we have in the previous problem is the moment of inertia about an
axis that is d = 1.2 m away, so:

(24 kg m2) = Icm+(10 kg)(1.2 m)2 or Icm = 24−14.4 = 9.6 kg m2 (same as we just computed
using the definition of I).



7. Moment of Inertia and Energy in Rotating Objects: (C)

Let’s take the same mobile we’ve been using, but this time
we’re going to rotate it about an axis that is perpendicular
to the plane of the object, going right through the geometric
center. Basically the mobile is now laying flat in the X-Y
plane (parallel to the ground, say). We stick a vertical rod
through the middle and spin it about that axis.

The axis of rotation now is coming perpendicularly up out of the page, intersecting the object
at the dot shown right in the middle of the rectangle.

The moment of inertia involves terms mir
2
i so we’ll need to determine how far each ball is

from the rotation axis (the dot in the middle of the rectangle). This is a rectangle, so each
of the corners is the same distance from that center point. The distance from point 1 to the
midpoint is exactly half the distance between opposite corners of the rectangle. The distance
between points 1 and 4, for example, is d =

√
22 + 42 =

√
20 = 2

√
5 so r = 1

2
d =

√
5 m. All

the points are located that same distance from the axis of rotation.

i mi xi yi ri r2i mir
2
i

1 1.0 0 0
√
5 5.00 5.00

2 2.0 2 0
√
5 5.00 10.0

3 3.0 0 4
√
5 5.00 15.0

4 4.0 2 4
√
5 5.00 20.0∑

mi = 10
∑

mir
2
i = 50.0

So here, I = 50.0 kg m2.

Work and Energy in Rotating Objects

From these three examples, we see that the moment of inertia of an object depends on what
axis we choose to rotate the object about. The energy in a rotating object is K = 1

2
Iω2 so

something with a larger moment of inertia will be storing more energy, and therefore we have
to do more work to get that object rotating. Looking at the equation, for objects rotating at
the same speed ω, we see that K is directly proportional to I.

Rotating about the center of mass produces the smallest moment of inertia. In example B,
we had I = 9.6 kg m2 so this one would be relatively easy to get spinning.

Example A had a moment of inertia of I = 24 kg m2 or over twice as much, so we’d have to
do twice as much work to spin this one up to the same speed.

Finally example C, rotating about the axis perpendicular to the plane of the mobile, had an
even larger moment of inertia and would require even more work to spin up.



8. Flywheel (A)

A rotating object represents a kinetic energy ofK = 1
2
Iω2 so

we can use this to ‘store’ energy. How fast would a flywheel
need to turn to store enough energy to power a house for a
day?

Looking at the equation for rotational kinetic energy, K = 1
2
Iω2, we see that the higher the

moment of inertia and the faster it spins, the more energy it can store. Also, note that ω
appears squared, so rotating it twice as fast will store 22 or 4 times as much energy.

A common flywheel design is a flattened disk (cylinder) rotating about an axis perpendicular
to its center, as shown in the figure. To fit in a typical home, how big could this thing be?
Let’s assume our cylinder is about a meter across ( R = 0.5 m ) and has a mass of 240 kg (i.e.
has a weight of about 530 pounds). The moment of inertia for such a shape is I = 1

2
MR2 so

here I = (0.5)(240 kg)(0.5 m)2 = 30 kg m2.

How much energy do I need to store in it? A typical home uses energy at a rate of roughly
1000 W or 1000 J/s. There are 86, 400 seconds in a day, so it looks like we need to store
8.64× 107 J of energy.

So: K = 8.64× 107 = 1
2
Iω2 becomes: 8.64× 107 = (0.5)(30)(ω)2 from which ω = 2400 rad/s.

Putting that in more meaningful terms, the frequency (how many revolutions per second) of
the cylinder’s rotation is f = ω/(2π) = 382 rev/s. So this large, heavy cylinder has to make
382 rotations every second, or 382 × 60 = 22, 920 rev/min. According to Wikipedia, old-
school metal flywheels can reach a few thousand RPM’s, and high-tech carbon fiber materials
can reach 60, 000 RPM , so this is at least plausible.

The speed of a point on the outer edge of the cylinder will be v = rω = (0.5 m)(2400 rad/s) =
1200 m/s which is about four times the speed of sound in air, so the cylinder would probably
need to be rotating in a vacuum.

Real-world Application

Around July 2011, Beacon Power, in Stephentown, New York installed the world’s largest
commercial flywheel energy storage device, consisting of multiple flywheels. (A few months
later, it filed for bankruptcy. Hm.) According to the article, it stores 5 MW-hr of energy,
which it can release at a rate of 20 MW for 15 minutes. 5 MW-hr of energy represents
(5 × 106 W hr) × 3600 s

1 hr
= 1.8 × 1010 W s but Watts is Joules/sec so this is 1.8 × 1010 J of

energy. This is about 200 times as much energy as the ‘home’ flywheel we did in this problem
stored, so this giant flywheel ‘farm’ could provide power for 200 homes for a full day (or all
of Starkville for a few minutes anyway).



9. Flywheel (B)

Suppose we want to attach the flywheel in the previous example to a motor to spin it up. If
the motor generates 100 ft lb of torque (a small car engine), how long would it take to spin
up the flywheel to the ω = 2400 rad/s speed we found in the previous example?

The torque will cause the object to angularly accelerate at some α, which will take some time
t to bring the flywheel from rest up to the desired final ω.

τ = Iα and we already found that I = 30 kg m2.

We don’t have the torque in the proper units here though, so converting:
τ = 100 ft lb× 1 m

3.281 ft
× 4.448 N

1 lb
= 136 N m.

τ = Iα then becomes: 136 = 30α or (since everything has been converted to standard metric
units) α = 4.533 rad/s2.

How long will it take to spin the flywheel up from rest?

ω = ωo + αt so 2400 = 0 + (4.533)(t) from which t = 529 sec or roughly 9 minutes.

Power output : how much power would the motor be putting out during this spinup? We
have to be careful how this question is asked. The average power would be the work done
divided by the time interval. From the previous flywheel example, we found that when spun-
up, it’s storing 8.64× 107 J of energy, so the motor will have to do that much work in 529 s,
representing an average power of: Pavg = work/time = (8.64×107 J)/(529 s) = 163, 200 watts
which is about 219 hp. That seems too high to be reasonable for a small gas engine. It gets
worse though.

The instanteous power output in the case of rotational motion can be written as P = τω
so the motor is putting out essentially no power at the start, but at the end when we have
ω = 2400 rad/s, then P = τω = (136 N m)(2400 rad/s) = 326, 400 watts or exactly twice
the average power we just found. This is 437 hp which is crazy high for a small motor.

With real engines, the torque and power output are not constant but vary with the angular
speed (i.e. the RPM’s) of the motor, usually both will start off rising with RPM and then
they’ll start dropping off. There’s usually a certain RPM where the motor is putting out
it’s maximum torque, and a different RPM where it’s putting out it’s maximum power. The
torque relates to the acceleration, and the power relates to the speed of the vehicle.

(Throughout this example, we presumed a constant angular acceleration, but in a real-world
version of our flywheel scenario, it would almost certainly not be.)



10. Rolling Pool Ball (A)
Suppose we have a pool ball rolling across a floor, without
slipping. Compare the translational kinetic energy (the
K represented by the object bodily moving off to the
right), to the rotational kinetic energy.
Let’s say the ball has a mass of 0.17 kg, a radius of 2 cm,
and is moving to the right at v = 2 m/s.

It’s rolling, which means it has an angular speed ω. Is this an independent variable (another
unknown) or is it related to the translational speed v? If we move along with the ball at
2 m/s, it looks to us like the ball is staying in one place, just rotating about it’s center, as
the floor glides off to the left at 2 m/s. The ball isn’t slipping which means that where
the ball touches the floor, the tangential speed right at the edge also has to be 2 m/s. But
the tangential and angular speeds are related by v = rω so that means the ball here has an
angular speed of ω = v/r = (2 m/s)/(0.02 m) = 100 rad/s. (From the first sample problem
in the examples for chapter 9, we showed that 1 rad/s = 9.549 RPM so that means here
the ball is rotating at 954.9 revolutions per minute as it rolls across the floor.)

The translational kinetic energy is Ktrans = 1
2
mv2cm and using the values for our pool ball:

Ktrans =
1
2
(0.17 kg)(2 m/s)2 = 0.34 J .

The rotational kinetic energy isKrot =
1
2
Icmω

2, so we’ll need to compute the moment of inertia
here. The ball is rotating about its center of mass, and Icm for a solid sphere is Icm = 2

5
MR2.

For this pool ball, Icm = (0.4)(0.17 kg)(0.02 m)2 = 2.72× 10−5 kg m2. We earlier found that
ω = 100 rad/s so the rotational kinetic energy is Krot =

1
2
(2.72× 10−5)(100)2 = 0.136 J .

The total kinetic energy in this moving and rolling pool ball, then, is K = Ktrans + Krot =
0.340J+0.136J = 0.476 J . About 71 percent of the total energy is in it’s translational motion
across the table, and about 29 percent in it’s rotational motion.



11. Rolling Pool Ball (B)
Let’s modify the previous problem and have the pool ball
rolling down an incline, starting at rest at the top. This
time we’ll do it symbolically first, and compare the speed
at the bottom to our ‘old’ way of doing this where we
assumed the object was just a point mass sliding down
a frictionless incline (we’ll talk more about that in the
solution below).

Point Mass : First, refer back to earlier examples from work-energy or conservation of energy
where we looked at objects sliding down inclines. If we call the bottom of the incline our y = 0
reference level, then the object of mass M is starting at some height h above the floor. This
represents some gravitational potential energy of Ug = Mgh.

When the object reaches the bottom, all this energy has been converted into the kinetic energy
of the moving mass, so (K+Ug+Uel)2 = (K+Ug+Uel)1+Wother becomes: (1

2
Mv2+0+0) =

(0 + Mgh + 0) + 0 or 1
2
Mv2 = Mgh. Dividing the equation by M , which appears in each

term: v2 = 2gh or just v =
√
2gh. That’s the result for a point mass sliding down the ramp

with no friction.

Rolling Sphere : Now let’s take into account the energy in the rolling ball. Note that we
have to add friction now, so that the ball actually will spin as it rolls down but the ball is not
sliding at all: there is no kinetic friction removing work from the ball as it moves down this
incline. Our conservation of energy equation has a new term now: K represents two terms,
the translational kinetic energy from earlier chapters, plus now the rotational kinetic energy.
Our conservation of energy equation now becomes: 1

2
Mv2 + 1

2
Iω2 = Mgh. We have to be

a bit careful/picky at this point. The h in this equation represents the height change of the
center of mass of the ball. So in this equation, y = 0 represents the level of the center of the
ball at the bottom, and y = h is the level of the center of the ball at the top of the incline.

For a uniform solid sphere, I = 2
5
MR2 so Krot =

1
2
Iω2 becomes: Krot =

1
2
( 2

5
MR2 )ω2 or

Krot =
1
5
M(Rω)2. But Rω = v, the translational speed of the center of mass down the incline,

so we can write this as Krot =
1
5
Mv2.

Combining this with the translation kinetic energy, the total kinetic energy of the moving and
rotating pool ball at the bottom of the incline will be: K = 1

2
Mv2 + 1

5
Mv2 or K = 7

10
Mv2.

Conservation of energy then becomes: 7
10
Mv2 = Mgh or v2 = 10

7
gh and finally v =

√
10
7
gh.

This will be slightly less than the v we got for a point mass just sliding down a frictionless
incline above. Note : this equation for speed v doesn’t depend on either the mass of the
sphere, or it’s radius! So any uniform solid sphere would get to the bottom having this same
speed.

If we take a 2 meter long board and raise it to make a 30o incline, that makes h = (2m) sin 30 =
1.0 m. A point mass sliding down this frictionless ramp would have a speed at the bottom of

v =
√
2gh =

√
(2)(9.81)(1) = 4.43 m/s.

A ball rolling down this same incline would have a speed at the bottom of v =
√

10
7
gh =√

(1.42857)(9.81)(1.00) = 3.74 m/s, which is about 15 percent slower.



12. Hula-hoop We’ve seen in the previous ex-
amples that when an object can rotate ki-
netic energy has two places to go: the over-
all translation of the object, and it’s rota-
tion. The larger the moment of inertia, I,
the larger the fraction of energy ends up
going into the Krot term, leaving less for
Ktrans which means the object is moving
more slowly. What is the ‘worst-case’ sce-
nario for this rolling motion? That would
be when the moment of inertia is as large
as possible, which means we want all the
mass to be as far from the center-of-mass
as possible.

The limiting case is where we put all the mass out at some radius R from the axis of rotation,
which means we basically have the shape of a hula hoop. (An empty tin-can with the ends
cut off would also have this ‘maximum’ moment of inertia.)

The diameter of a hula hoop is almost exactly one meter, so R = 0.5 m. It has a mass of
about 1 kg. If we can get the hula hoop to stay upright and roll down an incline, how fast
will it be moving at the bottom?

There’s no need to reproduce all of the previous derivation here but to summarize, the center
of mass of the hoop will be moving with a speed v, and it is rotating about that center of
mass with an angular speed ω = v/R. The rotational kinetic energy is Krot =

1
2
Iω2 but for

this geometry, all the mass is located out at the edge so I = MR2 and Krot =
1
2
(MR2)ω2 =

1
2
M(Rω)2 = 1

2
Mv2.

That means that the rotational kinetic energy for this rolling hoop is just as large as the
translational kinetic energy as it moves bodily down the ramp.

The total kinetic energy at the bottom is Ktrans +Krot =
1
2
Mv2 + 1

2
Mv2 = Mv2.

From conservation of energy, all the initial gravitational potential energy has been turned
into this kinetic energy, so Mgh = Mv2 or v =

√
gh. Note again here, like in the previous

problem, that in the end the mass of the hoop and it’s radius ended up not mattering.

Using the same 2 meter board pitched up at a 30 degree angle from the previous problem, we

have h = 1.0 m so v =
√
(9.81)(1.0) = 3.13 m/s (slower than the speed we got for the rolling

ball in the previous example).



13. Stone and Pulley (a)

A frictionless pulley has the shape of a uniform solid disk of
mass 2.40 kg and radius 10 cm. A 1.50 kg stone is attached
to a very light wire that is wrapped around the rim of the
pulley, and the system is released from rest, with the stone
located 2 m above the floor. How fast will be stone be
moving when it hits the floor? at that point?

As the stone starts to fall, the wire moves with it and since it doesn’t slip against the pulley,
the pulley will start rotating. If the stone is moving at a speed v downward, points in the
wire are also moving at that same speed. Specifically points on the wire that are still wrapped
around the cylinder are moving with that same speed v which implies that points around the
edge of the cylinder are also moving with that speed. Looking at the cylinder, the speed of a
point on the edge is related to the angular speed of the disk through v = rω so this connects
the speed of the stone to the angular speed of the disk.

We can solve this using conservation of energy. Using the floor as our reference level for Ug,
initially we have some gravitational potential energy in the stone. As it falls, that energy
is being converted into the kinetic energy of the falling stone and the kinetic energy of the
rotating disk: (K + Ug + Uel)2 = (K + Ug + Uel)1 +Wother. We have no springs, so Uel = 0
on both sides. Looking at the system as a whole, the tension is basically an internal force so
does no work (see the various Atwood machine examples from earlier). At the initial position
(1) we have some gravitational potential energy in the rock. At the final position (2), we just
have kinetic energy but in two forms: the falling rock, and the rotating disk:

(1
2
Mstonev

2 + 1
2
Iω2 + 0 + 0) = (Mstonegh+ 0 + 0) + 0

We have the mass of the stone (1.5 kg), and we know v = Rω where R = 10 cm is the radius
of the disk. Let’s focus on the rotational energy term for a minute: The moment of inertia
of the disk is I = 1

2
MdiskR

2 which means that the kinetic energy of the spinning disk will be
Krot =

1
2
Iω2 = 1

2
(1
2
MdiskR

2)ω2 which we can rearrange into: 1
4
Mdisk(Rω)2 but Rω = v, the

speed of the falling rock, so finally the rotational energy of the disk is Krot =
1
4
Mdiskv

2.

We can thus rewrite our conservation of energy as:
1
2
Mstonev

2 + 1
4
Mdiskv

2 = Mstonegh or finally: (1
2
Mstone +

1
4
Mdisk)v

2 = Mstonegh.

That’s about as far as we can go symbolically, so we’ll go ahead and substitute in the numeric
values were have now:

(1
2
(1.5) + 1

4
(2.4))v2 = (1.5)(9.81)(2.0) or 1.35v2 = 29.43 and finally v = 4.67 m/s.

Note: if there were no disk, or the disk had zero moment of inertia (which is what we assumed
in prior chapters), we’d end up with just 1

2
Mstonev

2 = Mstonegh or v =
√
2gh = 6.26 m/s, so

actually including the rotating disk in the (more realistic version of the) problem results in
the stone falling more slowly.



14. Stone and Pulley (b)

A frictionless pulley has the shape of a uniform solid disk of
mass 2.40 kg and radius 10 cm. A 1.50 kg stone is attached
to a very light wire that is wrapped around the rim of the
pulley, and the system is released from rest, with the stone
located 2 m above the floor. How fast will be stone be
moving when it hits the floor? at that point?

Let’s do the exact same problem, but use torque this time.

As the stone starts to fall, the wire moves with it and since it doesn’t slip against the pulley,
the pulley will start rotating. If the stone is moving at a speed v downward, points in the
wire are also moving at that same speed. Specifically points on the wire that are still wrapped
around the cylinder are moving with that same speed v which implies that points around the
edge of the cylinder are also moving with that speed. This connects the speed of the stone
and the angular speed of the pulley: v = rω and also connects the acceleration or the stone
and the angular acceleration of the pulley: a = rα.

Let’s chose a coordinate system such that a and α are both positive, which means for the
stone, our positive axis is pointing downward.

Focusing on the stone: we have gravity downward (which is our positive direction now) and
tension upward. Applying Newton’s laws to the stone: Mstoneg− T = Mstonea or (1.5)(9.8)−
T = 1.5a or finally: 14.7− T = 1.5a. That’s two unknowns, so let’s look at the pulley now.

Focusing on the pulley: τ = Iα : the torque is being created by the tension in the cable, and
it’s being applied at the edge so τ = Tr = (T )(0.1) This is a CCW torque, so will induce a
positive angular acceleration.

I = 1
2
MpulleyR

2 = 1
2
(2.4)(0.1)2 = 0.012 kg m2 so putting this together: τ = Iα becomes:

0.1T = 0.012α.

Did we make any progress? Actually yes, since a = rα so α = a/r = a/0.1 = 10a so making
that substitution: 0.1T = (0.012)(10)(a) or T = 1.2a

Finally we have two equations and two unknowns: 14.7− T = 1.5a and T = 1.2a. Replacing
T in the first equation:

14.7− 1.2a = 1.5a or 14.7 = 2.7a and finally a = 5.444 m/s2.

How fast is the stone moving when it hits the floor, 2 meters below where it was released from
rest?

v2 = v2o+2a∆y (remember our positive axis is pointing downward) so: v2 = 0+(2)(5.444)(2.0) =
21.78 or |v| = 4.67 m/s which is the same result we got using conservation of energy earlier.



15. Falling Pole

Suppose we have a 4 m long pole of mass
120 kg, with the mass evenly distributed
(i.e. the same density throughout). The
pole is fixed at the bottom so it can rotate
about that point. If it falls over, how fast
will a point at the top end of the pole be
moving when it hits the ground?

The pole just standing there is technically stable, but the slightest puff of air will cause it to
start falling. For simplicity, let’s say the initial angular speed is essentially zero.

As the pole rotates about the point on the ground, it is rotating with some (varying) rotational
speed ω. Consider a point at the top end of the pole. A point out there is moving with a
linear speed of v = rω or here v = Lω. We can use conservation of energy to solve this. Using
the level of the ground as y = 0, we see we have some gravitational potential energy in the
pole initially. Just before it hits the ground, the pole has converted all that Ug into rotational
kinetic energy.

Here we basically have a thin cylinder of mass M and length L rotating about one of its
ends. From table 9.2, the moment of inertia of such an object is I = 1

3
ML2, or here: I =

1
3
(120 kg)(4 m)2 = 640 kg m2.

For an extended object, recall that the gravitational potential energy is just Ug = Mgycm (i.e.
it acts as if all the mass were concentrated at the center of mass). For our pole, the Y center
of mass will be at the midpoint, or 2.0 m above the ground.

So: we initially have Ug = MgYcm = (120 kg)(9.81 m/s2)(2.0 m) = 2354.4 J .

Just before we hit the ground, all this energy is in the form of Krot =
1
2
Iω2 so (2354.4) =

(0.5)(640)(ω)2 or ω = 2.71 rad/s at the instant just before the pole hits the ground. The point
on the top of the pole will be moving with a speed of v = rω = (4.0m)(2.71 rad/s) = 10.8m/s.

Let’s compare that to how fast a mass dropped vertically downward from 4 m would be
moving just before hitting the ground? In that case, it would have an initial Ug of mgh
and at the ground all that energy is converted to kinetic, so mgh = 1

2
mv2 or v =

√
2gh =√

(2)(9.81)(4) = 8.85 m/s.

The end of the falling pole actually hits the ground faster than an object falling straight down
from that height.



16. Circular Saw

A flat circular saw blade has a mass of 0.5 kg and a radius of 10 cm. The motor in the saw
spins this blade from rest up to 2000 RPM in 2 sec.

(a) How much energy is in the rotating saw blade?

(b) How much power, on average, was the motor expending during the spin-up?

(c) How much torque did the motor have to generate (assume constant angular acceleration)?

(a) We have a flattened cylindrical shape rotating about an axis perpendicular through its
center, so looking at the table of moments of inertia, I for this shape will be I = 1

2
MR2. Here,

M = 0.5 kg and R = 10 cm = 0.1 m so I = 1
2
(0.5 kg)(0.1 m)2 = 2.5× 10−3 kg m2.

When the blade is completely spun up, it’s rotating at 2000 RPM or 2000 complete resolutions
per minute. Rotational kinetic energy is Krot =

1
2
Iω2 so we need ω here: the angular speed

in radians per second.

Each revolution is equivalent to 2π radians, so 2000 RPM = 2000 rev
min

× 2π rad
1 rev

× 1 min
60 sec

=
209.4 rad/s.

Krot =
1
2
Iω2 = 1

2
(2.5× 10−3 kg m2)(209.4 rad/s)2 = 54.83 kg m2/s2 = 54.8 J .

(b) Power is the rate at which work is being done: Pavg = ∆W/∆t. The power the motor is
putting out is going into increasing the kinetic energy (rotational speed) of the blade. The
blade went from rest to storing 54.8 J of energy in 2 seconds, so the motor was doing work
at an average rate of Pavg = (54.8 J)/(2 s) = 27.4 Watts (pretty feeble for a circular saw...)

(c) τ = Iα and we already found the moment of inertia, so what is the angular acceleration
here? The blade spins up from ω = 0 to ω = 209.4 rad/s in two seconds so: ω = ωo + αt
becomes: 209.4 rad/s = 0 + (α)(2 s) or α = 104.7 rad/s2.

τ = Iα = (0.0025 kg m2)(104.7 rad/s2) = 0.262 N m.


