PH2213 Fox : Lecture 03
Chapter 2 : Kinematics in One Dimension

Our toolkit for analyzing motion now consists of:

Definitions (1-D motion)

Displacement Ax

time interval At

Average velocity Vavg = AX/At
Instantaneous velocity v =dx/dt
Average acceleration Aavg = AV/AL
Instantaneous acceleration a=dv/dt

One-Dimensional Equations of Motion
— *ONLY* if constant acceleration <—

vV =V, + at

Vavg = %(V0 +v)=vo+ %at

X = Xo + Vayg * t

X =Xo + 3(Vo + V)t

X = X, + Vol + zat?

vZ =v2 +2alAx

Let’s look at one common type of motion where acceleration is constant:

Free-fall motion : the object is only moving under the influence of gravity, which means it has an
acceleration directed downward towards the earth (or moon, or other object). The magnitude of
the acceleration due to gravity at the surface of the earth is approximately |a| = g = 9.80 m/s?.

e The entity g is always a positive constant.

e The acceleration may be either a = +9.8 m/s? or a = —9.8 m/s? depending on your choice

of coordinate system.




Example : A ball is released (at rest) from a height of 2 meters above the floor. (a) How much
time does it take for the ball to hit the floor? (b) How fast is the ball moving at that point?

’ Solution 1 \ In this version, we’ll solve for the TIME first, then use Oinlha\
that to aid in finding the velocity. $

Let’s use a coordinate system where the origin is on the floor below
the ball, with the positive direction being upward, as shown in the
figure on the right.
We need to associate the information we have with the related variables
in our equations of motion but can’t do that until we've defined our
coordinate system.

This is particularly important in the case of the acceleration. IF we have a coordinate system
pointing upward, we know that if we throw a ball upward it will gradually slow down. That initial
large positive (upward) velocity is getting smaller and smaller, so a graph of v(¢) has a downward
(i.e. negative) slope, meaning the acceleration due to gravity in this case is negative. That’s entirely
due to our choice of coordinates though. If we release a ball from rest in a coordinate system that’s
pointing downward, it’s velocity will get take on higher and higher positive values: that graph of
v(t) will have a positive slope (and therefore a positive acceleration).

In our upward-pointing coordinate system, we have:
e initial position: y, = +2 m
e initial velocity: v, =0 m/s

e acceleration: a = —9.8 m/s? : see discussion above; with our choice of coordinates (positive
upward), the acceleration is down towards the earth, so a is negative, in our coordinate system

e final position: y =0 m

Perusing our available equations of motion, the only viable option to directly determine the time
based on what we do know is: y(t) = y, + vot + 3at?

Inserting what we know this becomes: y(t) = 24 (0)(¢) 4+ 3(—9.8)t or: |y(t) = 2 — 4.9¢2

This gives us the position of the ball as a function of time. Mathematically, this equations runs
over all possible times from negative to positive infinity, but only a small segment of this graph
represents the actual motion of the ball: from ¢t = 0 when it was released, until some time later
when the ball first hits the floor. (See next page for figures.)

When the ball hits the floor, it will have a y value of zero so we can use that information to determine
the time: y(t) =2 —4.9t> s0 0 =2 — 4.9t*> or 4.9t> = 2

The solution then is t = +/(2/4.9) = £0.63888 sec.

We know the ball will hit the ground after it was released at ¢t = 0, so the actual solution must be
| t=+0.63888 s |

Velocity: v(t) = v, + at so here we have v(t) = 0+ (—9.8)t or just v(t) = —9.8¢. Evaluating that at
t = 0.63888 s, we have |v = —6.261 m/s|.




Figures for version 1 of the solution (with positive upward)
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Note: the ball was released at t = 0 and it hit floor at ¢ = 0.6389 s so only that segment of the
curve is valid (and is highlighted with a thicker line).



| Solution 2 |In this version, we’ll solve for the VELOCITY first, then Omnrhel

use that to aid in finding the time. Y| ¢

This time, let’s use a coordinate system where the origin is located l

at the ball’s initial position, and let’s have the positive direction being

downward. This is actually a common choice also: placing the origin l
where the problem starts, and have positive be in the direction the

thing is initially moving. Here, the ball will start falling downward ) Rinal
once released, so we’ll make ‘down’ our positive direction this time. T

The ball is going faster and faster once we release it; it’s moving downward (our positive direction),
so it’s velocity is taking on larger and larger positive values as time increases. The slope of this
graph is positive, giving us a positive acceleration this time: a = +9.8 m/s%.

With this coordinate system choice (which had to be made first), label all the variables we know or
desire: v, =0, Yy, = 0 m, and Yfing = +2 m. Our unknowns are ¢ and v at the floor.

One solution : find VELOCITY first : given the variables we have and what we’re looking for
(v at the floor in this case), our only choice really is:
v? =02 + 2aAy.
AY = Yfinal — Yinitias =2 —0=2m
Putting this together: v* = (0)? + (2)(9.8)(2) = 39.2 from which v = v/39.4 = +6.261 m/s.

We know the ball is travelling downward when it hits the floor, and we’ve defined ‘down’ to be our
positive direction, so that resolves the sign ambiguity, leaving us with | v = 4+6.261 m/s |.

We can now use that information to determine the time when the ball hits the floor: v = v, + at so
6.262 = 0 + 9.8¢ from which |+ = +0.63888 s|.

Note we got the same TIME either way; our velocity had the same magnitude each way, but a
different sign depending on our coordinate system.

Another Solution : find TIME first : we could determine the time first, then use that to find
the velocity. With the coordinate system we chose here, the ball is starting at rest, at y = 0. The
acceleration is downward and that’s our positive direction now, so a = +9.8 m/s%. Our position
equation of motion y = y, + v,t + 3at? then becomes just: y = 4.9t%. The ball hits the ground at
y = 2, so that implies a time of: 2 = 4.9¢? from which ¢t = £0.63888 s. The ball hits the ground
AFTER being released, so the solution must be t = +0.63888 s.

Then v = v, + at = 0+ 9.8t = (9.8 m/s?)(0.63888 s) = +6.261 m/s. (Remember, we're using
a coordinate system with positive downward, so that positive velocity means the ball is travelling
downward when it hits the floor.)



Figures for version 2 of the solution : positive downward
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Note: the ball was released at t = 0 and it hit floor at £ = 0.6389 s so only that segment of the
curve is valid (and is highlighted with a thicker line).



Let’s try a slightly different problem. If we throw the ball vertically upward initially, it will
continue to travel upwards for a while before reaching some maximum height (called the apogee)
where it stops and then falls back down towards the ground.

Example : A ball is tossed upward at 4 m/s from a height of 2 meters above the
floor. (a) How much time does it take for the ball to hit the floor? (b) How fast is
the ball moving at that point? (c¢) Find the maximum height above the floor that the
ball reaches.

Coordinates : Let’s use the same coordinate system we used in the & \whal
first solution earlier: the origin will be on the ground below the ball,
and we’ll have positive pointing upward.

In this coordinate system, our initial variables will be: y, = +2, v, =
+4 m/s, a = —9.8 m/s* and when the ball finally hits the ground, it
will have a y coordinate of yfina = 0 m.

Solving for the time first:

Y= Yo+ Vot + 3at? =2+ 4t — 4.9t%.
The figure on the right shows this parabola. Set-
ting y = 0 we can find the time when the ball
hits the ground but there will (mathematically)
be two times when this happens.

0=2+ 4t — 4.9t%
The quadratic formula gives us two solutions: -}
t = 1.16628... s and t = —0.349966.. s. The ac-
tual physical trajectory of the ball is only valid ™[
from ¢ = 0 (when it was released) until some later _|
time when it hits the ground, so that leads to the
solution being: | t = 1.16628 s |. -

L
-8.5 a 8.5 1 1.5

v

We can find the velocity at that time using our velocity equation of motion: v = v, +at = 4—9.8t =
4 —9.8(1.16628) so | v = —7.42967.. m/s |.




NOTE: we can approach this problem by finding v first, just like we did in the previous example.

v? = v2 4+ 2aAy and again Ay = Yfinal — Yinitial S0 here Ay = 0 — 2 = =2 m. With our positive-
upward coordinate system, the change in the ball’s Y coordinate from initial to final positions is
-2 m.

Here then v?* = v2 + 2aAy becomes: v* = (4)? + (2)(—9.8)(—2) = 16 + 39.2 = 55.2 so |v| =
7.4297 m/s. |v = £7.4297 m/s | and which is it?

The ball is moving downward at that point, and we’ve defined positive to be upward, so we must
have: | v =—7.4297 m/s |.

TIME: v = v, + at so v = 4 — 9.8t and here —7.4287 = 4 — 9.8t. Rearrange: 9.8t = 4 + 7.4287 =
11.4287 from which ¢ = 1.1663 s.

Figures for this example
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How high up in the air did the ball go?

Looking at the sketch of the parabola representing this motion above, we see that the ball initially
rises, reaches a maximum height, then falls back down. Where does that peak occur?

ONE option: calculus. We're looking for the point on the y(t) curve where we have a max,/min,
so that occurs when dy/dt = 0, so could differentiate our y(¢) equation. BUT dy/dt is just the

velocity, so |that point is where v(t) =0/ :

v(t) = 4 — 9.8t so setting v = 0 at that point: 0 = 4 — 9.8¢, which implies |£ = 0.4082 s|. That is

the TIME when the ball reaches its apogee (highest point).

Evaluating y(t) at that point to determine it’s position: y(t) = 2 + 4t — 4.9t = 2 + (4)(0.4082) —
4.9(0.4082)? = 2.816 m (or about 82 cm above where it started).

We can also find the height directly without needing to find the time first.

Let’s apply the equation: v? = v2 + 2aAy between the starting point and the point where the ball
has reached it’s apogee. At that point, v = 0 so:

(0)2 = (4)? + (2)(—9.8)Ay or 0 = 16 — 19.6Ay from which Ay = +0.816 m.
Ay =y —y, =y — 2.0 though, so y = 2 4+ 0.816 = 2.816 m (same as before, of course).

There are almost always multiple paths through the equations of
motion to take data we have and infer other quantities. Part of the
solution to any problem though is defining what coordinate
system you are using, and then making sure everything is
consistent with that choice (especially signs).




Let’s exercise our equations of motion where two objects (with potentially different accelerations)
are involved.

Example 1 : A speeding car is travelling down a straight road at 30 m/s. A police
car on the side of the road sees the speeder coming and at the instant the speeder
passes the police car, the police car starts accelerating after the speeder with an
acceleration of 4 m/s%. The police car eventually catches up to the speeder: when
and where does that happen?

We have two objects here, each with their own set of equations of motion. Each has a constant
acceleration (zero for the speeder, 4 m/s? for the police car). One way of solving this would be to use
a single coordinate system to describe each vehicle and then their meeting spot would correspond
to the point where they both have the same X coordinate.

Let’s define our coordinate system so that z = 0 where the police car is initially siting at rest. And
we’ll let ¢ = 0 be the instant the speeder passes the police car. We'll let the +.X direction be along
the road in the direction the speeder is travelling.

The generic position equation for an object (when acceleration is constant) is given by = = x, +
Vot + %atz.

POSITION

1488

To simplify writing all these equations, let’s make
sure everything is in standard metric units and
then drop writing them. Then: gives ~ weof
the position of the speeder as a function of time.
For the police car, they're starting at = 0 at rest
and accelerating at 4 m/s? so this vehicle’s equa-
tion of motion would be z;, = 0+ 0+ (4 m/s?)t?

12ee

Position {n}

or | z, =2t? |

The graph here shows the position of the two ob-
jects as a function of time. o

Position
When the police car catches up to the speeder, they’ll both have the same value of z, so setting the

equations equal to one another: z, = x, or | 2t* = 30t |.

We can write this as 2(t — 15)(¢) = 0 which has two solutions: ¢t = 0 sec and t = 15 sec.

If we plug t = 0 into the equations of motion, we get z; = x, = 0 and this solution corresponds
to the point where the speeder is just passing by the stationary police car at the beginning of the
problem. (Meaning it’s not the solution we’re looking for.)



The t = 15 solution then is the later time when the police car has caught up to the speeder.

At this time, z, = 2t? = 2(15)? = 450 meters and x5 = 30t = (30)(15) = 450 meters (did both of
them to make sure they actually did come out to the same value).

How fast are the vehicles moving at this time?
The generic equation of motion for velocity is v(t) = v, + at.

The speeder is moving at a constant of 30 m/s, so has an acceleration of zero. The speeder’s velocity
equation of motion would be v,(t) = 30.

The police car is accelerating, so v = v, + at becomes v,(t) = 0 + 4t and evaluating this at the
meeting time: v, = (4)(15) = 60 m/s (a bit over 130 miles/hour).

This graph below shows the velocities of the two vehicles as functions of time.
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Example 2 : Let’s look at a more realistic version of the same scenario. Suppose the
police car doesn’t start accelerating right away: instead, let’s say it takes 2 seconds
for the driver to react before starting to accelerate after the speeder.

The police car will still eventually catch up to the speeder, but when and where does
that happen now?

POSITION

12688

Basically, the police car’s ‘graph’ of position and
velocity is the same as it was before, just delayed — e
by 2 seconds. That is, the graph of it’s equations p
is shifted to the right by 2 seconds. 1

We need to be able to write an equation for the
position of each vehicle as a function of time and
then set them equal to one another. How do we do
that for the police car though? For two seconds, 200
they’re just sitting at rest and only then do they
start accelerating? o 5 10 1 20 2

Tine {sec)

Position {n}

Position

One approach is to shift our coordinate system so that ¢ = 0 represents when the police car starts
accelerating, but that means we need to adjust the speeder’s equations of motion to reflect this.
See example 9 in the examples02.pdf file on Canvas for this approach.

Another approach to these ‘delay’ type problems is to adjust the original equation using a trick
you may have seen before. If you're comfortable with the process, this can sometimes simplify the
solution.

If we have some function z(t) and we want to ‘shift’ it’s shape to the right by 2
seconds, all we have to do is take the original x(¢) function and symbolically replace ¢
with ¢t — 2 everywhere. (Similarly, shifting a function to the left means replacing the
independent variable everywhere in the function by ¢+ (shift) instead of t — (shift).)

In the original problem, the police car’s equation of motion was z,(t) = 2t* so we can shift that
parabola 2 seconds to the right by replacing ¢ with ¢t — 2:
z,(t) =2(t — 2)? =2(t* — 4t +4) = 2t* — 8t + 8.

Now x5 = z, becomes 30t = 2t* — 8¢ + 8 or after collecting terms: 2t* — 38t + 8 = 0 which has
solutions ¢ = 0.2129 sec or t = 18.787 sec, so it took a few seconds longer for the police car to catch
up to the speeder.

Warning : Be careful interpreting times here though. That 18.787 sec time starts at the point
where the speeder passes the police car’s original location. From the police car’s point of view, they
don’t start moving until ¢ = 2, so they were accelerating for 18.787 — 2 = 16.787 sec (still longer
than the 15 seconds it took them to catch up to the speeder before though).



How about their velocities this time?

VELOCITY

With constant acceleration, v = v, + at in general
so for the speeder we still have v; = 30 + (0)¢ or
just vy = 30 m/s. (Replacing t with ¢ — 2 doesn’t
affect this equatio since t doesn’t explicitely ap-
pear on the RHS anywhere.)

For the police car, our original equation was v, = Wl
0 + 4t and when we shift this equation 2 seconds s
to the right, our new velocity equation would be B
v, =04 (4)(t —2) =4t — 8 (m/s).

This equation is only valid for t >= 2 of course;
before when v, = 0. o 5 10 i3 2 2

Tine (sec)

98 F
88 P
7o F
68

58

Velocity (n/s)

28 |

18

Velocity

At t = 18.787 s then, the police car has a velocity of v, = 4(18.787) — 8 = 67.15 m/s or about
150 miles/hr. Tt took them longer to catch up this time, so their constant 4 m/s* acceleration has
built up to a higher ‘final’ velocity than before.



Example 3 : Basically chapter 2 homework problem 71. A ball is dropped from
the top of a 50 m high cliff. At the same time, a carefully aimed stone is thrown
straight up from the bottom of the cliff at a speed of 24 m/s. The stone and ball
collide part way up. (a) How far above the base of the cliff does this happen? (b)
What velocities do the ball and stone have when they collide?

COORDINATES: Let’s use a Y axis with positive upward and with y = 0 at the base of the cliff.

HEIGHT

In these coordinates, the ball (A) starts at y, = :
50 m, at rest so v, = 0, and it’s accelerat- Ball
ing downward under the influence of gravity so .|
a = —9.8 m/s*>. The generic equation of mo-
tion for the ball: y(t) = y, + vot + 3at* becomes:
ya = 50 — 4.9¢
The stone (B) starts at ground level, moving up- £ =t

ward initially at 24 m/s, but it’s also accelerating
downward under the influence of gravity, so it’s  w}

. . 9 ) Stone
acceleration is also a = —9.8 m/s*. The generic
equation of motion applied to the stone then be- o -
comes: |yp = 0 + 24t — 4.9t Tine sec)

Position
The objects will be at the same y coordinate when they meet, so setting y4 = yp yields:

50 — 4.9t? = 24t — 4.9t* or 50 = 24¢ from which |¢ = 2.0833 s|.

Where are the objects at this meeting point? (They have to be at the same y coordinate, so I'll
calculate both as a check.)

e Ball : y4 =50 — 4.9t = 50 — 4.9(2.0833)? = 28.73 m

e Stone : yp = 24t — 4.9t* = (24)(2.0833) — (4.9)(2.0833)% = 28.73 m

How fast are the objects moving when they veLcTTy

38

meet?

e Ball : vy = v, +at = 0—98 = 0 —
(9.8)(2.0833) = —20.42 m/s

e Stone : v = v, +at = 24 — 9.8 =
+3.58 m/s (still upward, but much more
slowly than initially)

Velocity {n/s)

Note that their velocities are quite different
when they collide: the ball is moving downward
when they meet (v < 0) but the stone is still mov- -
ing upward (v > 0) at that point. Velocity




Example 4 : A ball (object A in the figure) is dropped from the top of a 50 m cliff.
ONE SECOND LATER, a stone (object B) is launched vertically upward from
the ground directly below at 24 m/s in an attempt to ‘intercept’ the ball before it
hits the ground. Is it successful? Does the stone manage to strike the ball before it
reaches the ground? What velocities do the objects have when they meet?

Like before, we’ll use a coordinate system with +Y vertically
upward (with it’s origin located at ground level), and starting @) relexsed
t = 0 when the ball at the top of the building was released. B ™ et
As before, the ball (A) will have a position equation of motion 1

of ya(t) = 50 — 4.9¢>
For the stone (B) launched upward from ground level, we basi- SOm
cally have the same situation as before BUT delayed by 1 second,
so let’s use the shift-trick. Our original equation for the stone
was yg = 24t — 4.9t so delaying this graph by one second (by

replacing ¢ with t — 1 everywhere on the RHS): \l lavacthed
yp = 24(t — 1) — 4.9(t — 1)? v Qo ard
Expanding that out and recollecting terms: 4 sec \estec

yp = —28.9 4+ 33.8t — 4.9¢*
Setting these equal to one another: 50 — 4.9t = —28.9 + 33.8¢ — 4.9t? (exact at this point)

Cancelling the common 4.9t term from each side: 50 = —28.9 + 33.8¢ which yields ¢ = 2.334 sec.

Evaluating each position equation:

o y4=50—4.9t2 =50 — (4.9)(2.334)% = 23.31 m
o yp = —28.9+33.8t — 4.9t2 = —28.9 + 33.8(2.334) — 4.9(2.334)% = 23.30 m

(I rounded off the time ¢ value to 4 significant figures, so should expect slight differences in the
fourth significant figure of these results...)
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Let’s attack this problem a different way.

We need acceleration to be constant to use our equations of motion. What if we wait for one second
and let t = 0 be the time when the stone (B) is launched from the ground this time? (Instead of
defining t = 0 as the point when the ball was dropped.)

FA s N
That makes the stone’s equation of motion simple: at i
this new ¢ = 0, the stone is located at y, = 0, is moving S04—__ Y (4
upward with a velocity of v, = +24 m/s and has an | N
acceleration of a = —9.8 m/s? so: yp = 0+ 24t — !
4.9¢2. | Y, (£
What about the ball though? At this new time that : A
we're now calling ¢ = 0, the ball has been falling for ; g neus
a full second, so it’s no longer at y = 50 m and its - N
velocity is no longer 0. x

Where will object A be one second after it was released?” Going back to it’s original equation of
motion (y4(t) = 50—4.9¢t%) we find that at the old ¢ = 1 it would be located at 50—4.9(1)* = 45.1 m.
That will be it’s new y, value in our new, delayed time coordinate. And what is it’s velocity at this
point? vu(t) = v, + at =0 — 9.8t so at t = 1 it will have a velocity of v = —9.8(1) = —9.8 m/s.

Moving to our NEW time coordinate, those will now be the initial (what we’re now calling ¢ = 0)
position and velocity values for object A.

Putting this together, our generic position equation of motion: y(t) = y, + v,t + %atz becomes:
ya(t) = 45.1 — 9.8¢ — 4.9¢2.

We now finally have two equations that describe the motion of the two objects (in our new time
coordinate that started at ¢ = 0 when object B was launched, one second after object A starting
falling): ya(t) = 45.1 — 9.8t — 4.9¢? and yp(t) = 24t — 4.9¢2

When will they collide? Setting y4 = yp we have: 45.1 — 9.8t — 4.9t? = 24t — 4.9¢>

At least here we get a break. Note that we have the identical t? terms on both sides of this equation
so can cancel those out, leaving: 45.1 — 9.8t = 24t

Rearranging: 45.1 = 9.8t 4+ 24t = 33.8t or t = 45.1/33.8 = 1.334 s.

The two objects (mathematically) will ‘meet’ exactly 1.334 seconds after object B was launched
(which is 2.334 seconds after object A was dropped, as we found in the first solution).

Where do the objects meet? : It’s possible the two parabolas might mathematically intersect at
some negative y value (i.e. below ground) which means that B didn’t reach A in time. Evaluating
our two expressions for y(t) at ¢ = 1.334 s we find that y4(1.334) = yp(1.334) = +23.3 m (to 3
significant figures anyway), so B successfully reached A that far above the ground.

What are their velocities when they meet? : Sticking with our new time coordinate, we have:
Ball: vy = v, +at = —9.8 — 9.8t = —9.8 — 9.8(1.334) = —22.9 m/s
Stone: vg = v, + at = 24 — 9.8t = 24 — 9.8(1.334) = +10.9 m/s

The ball (A) is moving downward rapidly, and the stone (B) has slowed down quite a bit from it’s
initial launch velocity but is still moving upward when they collide.



ADDENDUM : A ball is dropped from the top of a 50 m building. Simultaneously,
a little model rocket is launched vertically upward from ground level to try and
intercept the ball. The rocket starts at rest, but accelerates upward at 12 m/s%.
Where and when does the rocket intercept the ball?

We'll use a coordinate system with Y vertically upward and with ¥ = 0 down at ground level.

The generic equation of motion for the ball, y(t) = y, + vot + 3at* then becomes ypau = 50 — 4.9¢>
(as we've seen multiple times already, so I won’t rejustify it here...).

For the rocket, it’s starting at rest (v, = 0) down at y, = 0 but then it accelerates upward
at a = +12 m/s* (in our positive-upward coordinate system). It’s equation of motion then is
Yrocket = 0 + 0 + %(12)t2 - 6t2.

The objects meet when Yy = Yrocker S0 here 50—4.9t? = 6t? which we can rearrange into 50 = 10.9¢2,
yielding t = £2.142 sec. They meet after the ball is released, so ’ t=+42.142 s ‘

Where are the objects at that time? yp; = 50 — 4.9(2.142)? = +27.52 m, and as a check: Yocher =
6t2 = 6(2.142)% = +27.53 m. (Note I rounded off the time to 4 significant figures, so should expect
the two answers to agree to 3 signficant figures, but probably not to 4.)

(You should try converting this into a delay version, where the ball is
allowed to fall for a second before the rocket is launched. Don’t forget
to use the ‘trick’ for shifting a function. Here we want to DELAY the
rocket’s launch, so just take the original (simple) equation of motion
for the rocket and replace the ¢t symbol with ¢ —1 to create the 1 second
delay.)




Addendum: Additional 1-D motion example

Example : A race car, starting from rest, accelerates uniformly and passes the 1/4-
mile marker exactly 12 seconds later. Determine (a) the car’s acceleration, and (b)
it’s velocity when it passed by the marker.

What information do we have here?

e It started from rest, so v, =0

e It’s displacement over this interval is 1/4 of a mile; converting that to metric: 0.25 mile X
% = 402.25 m. Using a coordinate system that starts at + = 0 when the car starts
accelerating, we have x, = 0 and x = 402.25 m at t = 12 s, giving us a displacement of

Az = 402.25 m.

One Approach : finding acceleration first : Looking through the equations of motion, what
equation(s) do we have where we know everything except for the one thing we are seeking. I see
only one really: z = x, + v,t + %atz, which we can use to determine the acceleration. Substituting
in the parameters we know, this becomes: 402.25 = 0 + (0)(12) + (0.5)(a)(12)? or 402.25 = 72a

from which | a = 5.5868 m/s? |.

Knowing the acceleration, we can use other equations, such as v = v, + at to determine the velocity
when it reaches the marker: v = (0) + (5.5868 m/s?)(12 s) = 67.04 m/s (150.0 miles/hr).

Now that we know the acceleration, we can use that to find the velocity. One option: v? = v2+2aAx
since we now know everything there except for the final velocity: v* = (0)%2+(2)(5.5868 m/s*)(402.25 m) =
4494.58 m?/s%. Taking the square root of both sides, |v| = 67.04 m/s. (NOTE that technically the
math here isn’t revealing the sign for v since both +67.04 m/s and —67.04 m/s are solutions. We'll

see more of this later: how the pure math gives us more than one solutions and we’ll need to look
back at the scenario to determine which one is ‘right.’)

Another Approach : finding final velocity first : We know that v,,, = Az/At and v,y =
%(vo + v) so that gives us a way. The vehicle covers Az = 402.25 m in exactly At = 12 s so
Uang = (402.25 m) /(12 s) = 33.5208 m/s.

That’s the average velocity during this interval, but when the acceleration is constant, v4,, is also
equal to the average of the starting and ending velocities: vqy = 3(v, + v) s0 here 33.5208 m/s =
(0.5)(0 + vfing) from which vyipe = 67.04 m/s. (Same as we had before.)

And now that we have the final velocity, we have multiple options to find the acceleration. v = v,+at
would work since we have the initial and final velocities and the time interval. v? = v2 4 2aAx
works fine too since we have the initial and final velocities and the displacement.

The key point here is that there is often more than one path to the
solution. All of these equations of motion are just different mathemat-
ical ways of saying a = constant.




Appendix : Calculus-based Derivations

Some students have already seen integral calculus, and we can derive the equations of motion that
way too:

Equations of Motion

If the acceleration is constant, that means that dv/dt = a = constant.

Rearranging: dv = adt so integrating: f;; dv = fot adt so v — v, = at or .

Since v = dx/dt, we can write: dr = vdt, with v = v, + at so integrating: fxi dr = f(f(vo + at)dt

which yields: © — z, = vt + 3at® or | & =, + vt + sat® |

Average Velocity

The (time) average of any continuous function (in this case v(t)) between ¢t = 0 and some later time
t can be written as:

t

Jo(t)dt
0
'Uafug - +

IF the acceleration is constant, then v(t) = v, + at so we can do the integral:

j(vo+at)dt

_ 0 .
Vavg = = Or:

- v0t+%at2

Vavg =

. Cancelling a common t:

Vavg = Vo + %at (which is one of the forms we arrived at via the hand-waving argument in class).

2votat — Yot (votat)
2

__ Votw
or Uavg = 5 ==,

We can write that as: v,y = but that is just ve,y = %5

So when the acceleration is constant, the average velocity over an interval is just the average of the
velocities at the two endpoints.



