
PH2213 : Examples from Chapter 2 : One Dimensional Motion

Key Concepts

Kinematics deals with the description of how object move. The description of the motion of any
object must always be given relative to some particular reference frame. In this chapter, we start
with simple 1-D motion, then extend this to 2 and 3 dimensional motion in chapter 3.

The displacement of an object is the change in position of the object (typically ∆x or x− xo or
similar).

The average speed is the distance travelled (regardless of direction or sign) divided by the time
interval ∆t. The average velocity is the displacement divided by the time interval.

A good approach to solving problems is to pick a reference frame (i.e. choose a coordinate system)
which simplifies the description of the motion.

Key Equations

Average velocity: vavg =
xB−xA

tB−tA
= ∆x

∆t

Instantaneous velocity v = dx/dt.

Average acceleration: aavg =
vB−vA
tB−tA

= ∆v
∆t

Instantaneous acceleration a = dv/dt.

Straight-line motion with constant acceleration.
v = vo + at vavg = ∆x/∆t vavg =

1
2
(vo + v) vavg = vo +

1
2
at v2 = v2o +2a(x− x0)

x = xo + vot+
1
2
at2 x− xo = (vo+v

2
)t

Freely-falling bodies: special case where the acceleration a is due to gravity. The magnitude
of the acceleration due to gravity varies slightly around the surface of the earth, but for purposes
of this class (and particularly the online homework), assume g = 9.80 m/s2. The sign of the
acceleration will depend on your choice of coordinate system. On earth, if our axis is pointing up,
then a = −g = −9.80 m/s2.

Common Errors

• Frequently, equations involving gravity have already presumed an axis pointing vertically
upward, in which case a = −g and this negative sign has already been incorporated into
the equations. DO NOT ever use g = −9.8 m/s2. g by itself always represents a positive
number.

• distance vs displacement

• average vs instantaneous quantities

• the equations of motion presume that the acceleration is a constant. If the acceleration is not
constant over the entire problem, it may still be possible to break the scenario into separate
intervals with different but still constant accelerations (example: car speeds up, then cruises
at a constant speed, then comes to a stop: here we have three intervals where acceleration is
constant: but a different value in each interval).



1. Cheetah

A cheetah is being observed by a photographer. When the flash goes off, the cat darts directly
away from the photographer. Suppose we set up an axis with an origin at the location of the
photographer, with the cat initially 20m away, with t = 0 starting when the cat starts moving.
We now observe that it’s coordinate is given by: x = (20 m) + (5 m/s2)t2.

(a) Find the displacement of the cheetah between t=1 and t=2 seconds.

At t = 1, the cheetah is located at x1 = 20 + (5)(1)2 = 25 m.
At t = 2, the cheetah is located at x2 = 20 + (5)(2)2 = 40 m.

The displacement ∆x then is: ∆x = x(t = 2)− x(t = 1) = x2 − x1 = 40m− 25m = 15m.

(b) Find the average velocity between t=1 and t=2 sec.

The average velocity is given by vavg = ∆x/∆t and we computed ∆x for this same time
interval in part (a), so:

vavg = ∆x/∆t = 15 m
(2 s)−(1 s)

= (15m)/(1s) = 15m/s.

(c) Find the instantaneous velocity of the cheetah at t = 1 and t = 2.

The instantaneous velocity v = dx/dt and here x = 20 + 5t2 so we can differentiate this
expression and get a closed-form expression for v: v = dx/dt = 0+10t. All the units in every
term and every constant in the equation was already in standard metric units, so the velocity
must come out in proper metric units of m/s if I supply all the variables in proper metric
units (the time in seconds, for example).

At t = 1, the instantaneous velocity of the cheetah will be v = 10t = (10)(1) = 10 m/s.

At t = 2, the instantaneous velocity of the cheetah will be v = 10t = (10)(2) = 20 m/s.

(d) Find the acceleration of the cheetah at t = 1 and t = 2; also find the average acceleration
between those times.

a = dv/dt but we have a closed-form expression for v = 10t so a = 10 (or putting the units
back in: a = 10 m/s2). For this particular motion, apparently the cheetah has a constant
acceleration, so the answers for all three parts of this problem would be the same.



2. Equations of Motion : Car Accelerating from Rest

Suppose I am waiting to get onto the highway. An opening appears, and I hit the gas,
accelerating from rest to 60 miles/hr over a time interval of 10 s. What average acceleration
did the car have, and assuming the acceleration is constant how far did I travel?

First, let’s make sure everything is in standard metric units. Converting the final speed of
the car: (60miles

hr
)× 1609 m

1 mile
× 1 hr

3600 s
= 26.82 m/s.

The average acceleration is given by aavg = ∆v/∆t, so here we have aavg = 26.82−0
10−0

=
2.682 m/s2.

Assuming this remains constant, how far did I travel? We have several ways of solving this:

(a) We know the initial and final velocities, so vavg =
1
2
(vo+v) = (0.5)(26.82+0) = 13.41m/s

but vavg = ∆x/∆t so ∆x = vavg∆t = (13.41 m/s)(10 s) = 134.1 m.

(b) We computed the acceleration to be 2.682 m/s2 so we could use that to solve the problem
as well. x = xo + vot+

1
2
at2 or x = 0 + 0 + 1

2
(2.682)(10)2 = 134.1 m as well.

(c) Yet another option: v2 = v2o +2a∆x so in our case: (26.82)2 = (0)2+(2)(2.682)∆x which
also produces ∆x = 134.1 m.

All these paths through our equations of motion gave the ‘right’ answer. Note that (b) and
(c) required us to use a computed value (the acceleration) during the solution. Recall the
discussion about significant figures and round-off errors in chapter 1 though. Unless we keep
extra digits, any intermediate computed numbers are going to be less accurate, so using a
calculated value in a later step will increase the final error even more. We kept enough digits
in the solutions above so that it didn’t show up, but imagine if you had rounded off everything
to 3 or even just 2 significant figures. In that case, the final answers could all be quite different.

Rule of thumb for this particular course: if you have to write down an intermediate
result, retain at least 4 significant figures. (Even better, try to arrange the calculation
so the numbers never leave your calculator, which internally does its calculations using
6 or 7 significant figures.)



3. Equations of Motion : Car Coming to a Stop

Suppose the car in the previous example is moving along at 60 miles/hr and slams on the
brakes, screeching to a halt over a distance of 50 m. What acceleration does this represent?
How many seconds did this take?

Here we have a car with an initial velocity of 26.82 m/s and a final velocity of 0.0 m/s, and
this ‘event’ took place over a displacement of 50 m.

We’ll use a 1-D coordinate system (X) with +X in the direction of motion of the car, and
with x = 0 being at the point where the driver hit the brakes, and we’ll call that time t = 0.

We have multiple ways to solve this, but we can get the acceleration in a single step using

v2 = v2o +2a∆x, so let’s do so: (0)2 = (26.82)2+(2)(a)(50). Rearranging this: a = − (26.82)2

100
=

−7.193 m/s2.

Notice that this came out as a negative acceleration, which is what we expect since the velocity
is decreasing here.

Now that we have the acceleration, we could use v = vo + at to find the time interval:
0 = 26.82 + (−7.193)(t) or t = 3.73 s.



4. Equations of Motion : Designing Highway On-ramp

Suppose traffic will be entering the on-ramp at 30 miles/hr and will need to accelerate up to
60 miles/hr. Assume that an average car can manage an acceleration of at least 5 m/s2 and
determine how long the on-ramp needs to be. Also how long (seconds) will the driver be on
the ramp?

(Let’s convert everything to metric first. From an earlier problem, we already know that
60 miles/hr is 26.82 m/s, so 30 miles/hr would be exactly half that or 13.41 m/s.)

We’ll use a 1-D coordinate system (X) with +X in the direction of motion of the car, and with
x = 0 being at the point where the driver starts accelerating, and we’ll call that time t = 0.

Here we have the initial and final velocities, and an acceleration, and we’re looking for how
far the car will travel during this scenario (i.e. the car’s displacement), so we can use: v2 =
v2o + 2a∆x. Rearranging to solve for the length of the ramp:

∆x = v2−v2o
2a

From this expression, we see that the required length of the ramp is varying inversely with
the acceleration. A car with a given acceleration will require a ramp of a certain length. A
car with a higher acceleration (sports car, e.g.) would not need to use the full length of the
ramp. A car with a lower acceleration would need a longer distance to reach highway speed.
We can’t please everyone, so we’ve picked a particular acceleration to target, and we’ll just
have to hope that traffic makes room for the slower cars...

Our particular assumption about acceleration (a = 5 m/s2) implies a ramp length of ∆x =
v2−v2o
2a

= (26.82)2−(13.41)2

(2)(5)
= 53.9 m

(1 meter is about 3.281 feet, so this is about 177 feet.)

(b) What time interval was needed for the car to accelerate to highway speed?

We have the initial and final speeds and the acceleration, so the time interval is easy: v = vo+at
so 26.82 = 13.41 + 5t or t = 2.68 s



5. Free-fall: Water Balloon 1

Suppose we drop a water balloon from the top of Hilbun. How long does it take to fall, and
how fast is it moving when it hits the ground? Assume the distance from the top of Hilbun
to the ground is 15 m.

We have some choices about coordinates here. Technically we could use anything, but two
obvious choices are to put the origin at the top of Hilbun, or on the ground where the balloon
hits. We also have choices about the direction of our coordinate axis: up or down.

For this version of the problem, let’s choose the origin to be where I initially release the water
balloon, and let’s have the positive direction be vertically upward. Then in these coordinates,
the initial position will be at y = 0, the final position will be y = −15 m. The acceleration
is due to gravity so will have a magnitude of 9.80 m/s2 but this acceleration is directed
downward towards the center of the earth, so in our coordinate system this represents an
acceleration of a = −9.80 m/s2.

Now finally we can pull in whatever equations of motion we need to solve the problem.

We can find the speed at the ground from v2 = v2o + 2a∆x. Our initial velocity is vo = 0, the
displacement ∆x = xfinal−xinitial = (−15)−0 = −15 m. The acceleration is a = −9.80 m/s2,
so: v2 = (0)2 + (2)(−9.80)(−15) = +294 so v =

√
294 = ±17.15 m/s.

Notice that our equation told us nothing about the direction (sign) of this velocity, but our
real-world experience tells us that this velocity is actually in the downward direction at this
point, so v = −17.15 m/s would be the velocity of the object.

(Note: the question just asked for the speed when the object hit the ground, so |v| =
17.15 m/s would technically be the correct answer here...)

How long did the object take to fall? v = vo+at and here we do have to take into account all
the signs properly. At the point where the water balloon touches the ground: (−17.15 m/s) =
(0 m/s) + (−9.80 m/s2)(t) so t = −17.15

−9.80
= +1.75 s.

Alternate solution: When the acceleration is constant (which it is here), the position as a
function of time is given by: x = xo + vot +

1
2
at2. Here, with our choice of coordinate

system, xo = 0 and vo = 0. The acceleration is a = −9.80 m/s2, and when the balloon
hits the ground, it has an x coordinate of x = −15 m. We know everything in the equation
except for the time then: (−15) = (0) + (0)(t) + 1

2
(−9.8)t2 or −15 = −4.9t2 which leads to

t2 = (−15)/(−4.9) = +3.061 or t = ±1.75 s.

Again, we have to bring reality into the picture: clearly the balloon didn’t hit the ground
before it was released, so t = +1.75 s would be the correct solution.

And now that we know how long it took to fall, we could compute the velocity at the ground:
v = vo + at = (0) + (−9.80)(1.75) = −17.15 m/s.



6. Free-fall: Water Balloon 2

Let’s change up the previous problem and instead of just letting the balloon go, we throw
the water balloon straight down with an initial speed of 10 m/s. How fast does it hit the
ground now and how long does it take to reach the ground?

We’ll use the same coordinate system as in the previous problem, which means our initial
position is at the origin, our initial velocity is downward which makes vo = −10m/s (negative).
The ground level will be at y = −15 again.

(a) How fast will it be going when it hits the ground?

v2 = v2o + 2a∆y where ∆y = yfinal − yinitial = −15− 0 = −15 m, so:

(v2) = (−10 m/s)2 + (2)(−9.8 m/s2)(−15m) or (v2) = 100m2/s2 + 294m2/s2 = 394m2/s2

so v =
√
394 = ±19.85 m/s. As before, we know from reality that the balloon is moving

downward when it hits the ground and ‘down’ is the negative direction in our choice of
coordinates, so v = −19.85 m/s would be the correct value for the velocity of the balloon.
(The question just asked for ‘how fast’ it was moving, so 19.85 m/s would be the correct
answer for this part.)

(b) How long will it take to hit the ground?

v = vo+at so (−19.85 m/s) = (−10 m/s)+(−9.8 m/s2)(t) so (−9.85 m/s) = (−9.8 m/s2)(t)
or t = 1.005 sec.

Note how careful we had to be with signs here. Also part (a) just asked for the speed of the
balloon when it hit the ground, which is the absolute value of the velocity, but we needed to
use the correct signed velocity to solve part (b).

(You should retry this problem using other coordinate systems. Try one where our Y axis is
pointing downward, for example. How do the signs of some of the variables change?



7. Free-fall: Model Rocket

A model rocket is fired vertically upward. It accelerates upwards at 3 m/s2 for 10 seconds (i.e.
the rocket is overcoming gravity and then some, so that in the net, it accelerates upward.)
Then the engine cuts off. How far up does the rocket go? How long is it in flight? How fast
does it hit the ground?

Discussion : The acceleration of the rocket is not constant if we look at the complete trip
(from launch to its return to the ground). It does consist of two intervals over which the
acceleration is constant though: during the initial 10 seconds, the acceleration is 3 m/s2

upward; during the rest of its flight, the acceleration is 9.8 m/s2 downward.

After the initial 10 seconds, the rocket will be located at some height above the ground, and
will be shooting upward at some considerable velocity. At this point, it will be accelerating
downward due to gravity, which will cause the velocity to decrease, eventually causing the
rocket to come to a (momentary) stop at some height, at which point the rocket will accelerate
towards the earth.

Let’s break the entire flight into several segments:

(A) represents the point when the rocket is initially fired

(B) will be the point where the rocket cuts off (at t = 10 s)

(C) is the point where the rocket has stopped coasting upward and has come to a stop (this
‘maximum height’ is called the apogee)

(D) the point where the rocket has returned to the ground

Coordinate System

Since the rocket starts at ground level, flies upward to some height, then falls back to the
ground, let’s choose a vertical coordinate (which we’ll call the Y axis) that has its origin on
the ground, with +Y pointing vertically upward. (Note: it doesn’t matter what we call the
axis but I’ll follow the common convention here.)

Interval from A to B (the first 10 seconds)

During this interval, the rocket is moving upwards at the given acceleration so y = yo + vot+
1
2
at2 so y = (0) + (0)(10) + 1

2
(3 m/s2)(10 s)2 so y = 150 m.

How fast is the rocket moving at this time? v = vo + at so v = (0) + (3)(10) = 30 m/s.

Interval from B to C (coasting upward) : Determining the apogee

What happens at point B now? The rocket engine has just cut off, but the rocket does not
suddenly come to a stop. Instead, we now have an object located 150 m above the ground,
moving upward at a velocity of 30 m/s, but now being acted on by gravity resulting in an
acceleration of −9.8 m/s2. Just like a ball thrown upward into the air, the rocket will continue
to fly upward, but will be slowing down. Eventually the velocity will reach zero, and then
start becoming more and more negative as the rocket falls back towards the ground. The
point where it stops moving upward and (momentarily) come to a stop will be the maximum
height the rocket reaches above the ground, a point called the apogee.

How much farther upward will the rocket coast before coming to a stop?

For this interval, we have an initial y coordinate of 150 m and an initial velocity of v =
+30 m/s, and an acceleration of a = −9.8 m/s2.



v2 = v2o + 2a∆y so: between points B and C we have:

(0)2 = (30 m/s)2 + (2)(−9.8 m/s2)∆y or 0 = 900− 19.6∆y. Rearranging: (19.6)∆y = 900 or
∆y = 900/19.6 = 45.9 m. Thus during this interval, the rocket continues to move up another
45.9 m before reaching its apogee and finally coming to a stop.

This displacement is on top of the height that the rocket had already reached during the burn
phase, which means that it is now located at y = 150 + 45.9 or y = 195.9 m (about 630 feet
above the ground).

How much time did it take to reach this apogee point?

Looking at just the interval from B to C, v = vo + at so 0 = (+30) + (−9.8)t or t =
(−30)/(−9.8) = 3.06 s. This is the time interval for just this little part of the motion: from
when the rocket cut out, to the point where it has reached its maximum height. So starting
from the ground, our stop watch would read 10 seconds plus this additional amount of time,
or t = 10 + 3.06 = 13.06 s.

Interval from B to D

We’d like to know how fast the rocket hits the ground, and how much total time has elapsed
from when we initially fired it off.

We have to look at ‘constant acceleration’ segments so that we can use our equations of
motion. From A to B, we had an acceleration of +3 m/s2. From that point all the way up
to the apogee and then all the way back down to the ground, the acceleration has the same
constant value of −9.8 m/s2, so we can actually go all the way from B (the point when the
rocket cut out) to the ground level (point D).

During this interval, our initial condition is: rocket located 150 m above the ground, moving
upward at vo = +30 m/s. Our final condition is the rocket hitting the ground (i.e. it has a y
coordinate of y = 0) with some velocity v.

v2 = v2o + 2a∆y

∆y = yfinal − yinitial so ∆y = (0m)− (150 m) = −150 m.

Substituting in what we know:

v2 = (+30)2 + (2)(−9.8)(−150) = 900 + 2940 = 3840 so v =
√
3840 = ±61.97 m/s

We know the rocket is moving downward when it hits the ground, so we can discard the
positive solution there and say that v = −61.97 m/s when it returns to the ground level.
(This is almost 140 miles/hr, which explains why these toy rockets often end up in pieces
when they hit the ground...)

How long did this part of the flight take? Looking again all the way from B to D: v = vo + at
so (−61.97) = (+30) + (−9.8)(t) or t = (−91.97)/(−9.8) = 9.38 s.

That’s the time just from B to D though, so if we want the entire time of flight, from launch
to ‘landing’, we need to add the time during the interval from A to B (the 10 seconds during
which the rocket was firing), so our stop watch for the entire trip would read 10 + 9.38 or
19.38 s.



8. Two Objects : Car Chase (1)

Suppose a speeding car is travelling down a straight road at 30 m/s. A police car on the side
of the road sees the speeder coming and at the instant the speeder passes the police car, the
police car starts accelerating after the speeder with an acceleration of 4 m/s2. The police car
eventually catches up to the speeder: when and where does that happen?

We have two objects here, each with their own set of equations of motion. Each has a constant
acceleration (zero for the speeder, 4 m/s2 for the police car). One way of solving this would be
to use a single coordinate system to describe each vehicle and then their meeting spot would
correspond to the point where they both have the same X coordinate.

Let’s define our coordinate system so that x = 0 where the police car is initially siting at
rest. And we’ll let t = 0 be the instant the speeder passes the police car. We’ll let the +X
direction be along the road in the direction the speeder is travelling.

The position of an object (when acceleration is constant) is given by x = xo + vot+
1
2
at2.

For the speeder, at t = 0 they’re located at x = 0 (this is the point where the speeder is
passing the stationary police car). It’s moving at a constant speed of 30 m/s and has an
acceleration of 0 m/s2 so it’s equation of motion would be: xS = 0 + (30 m/s)(t) + 0.

To simplify writing all these equations, let’s make sure everything is in standard metric units
and then drop writing them. Then: xs = 30t gives the position of the speeder as a function
of time.

For the police car, they’re starting at x = 0 at rest and accelerating at 4 m/s2 so this vehicle’s

equation of motion would be xp = 0 + 0 + 1
2
(4 m/s2)t2 or xp = 2t2 .

When the police car catches up to the speeder, they’ll both have the same value of x, so

setting the equations equal to one another: xp = xs or 2t2 = 30t .

We can write this as 2(t− 15)(t) = 0 which has two solutions: t = 0 sec and t = 15 sec.

If we plug t = 0 into the equations of motion, we get xs = xp = 0 and this solution corresponds
to the point where the speeder is just passing by the stationary police car at the beginning of
the problem.

The t = 15 solution then is the later time when the police car has caught up to the speeder.

At this time, xp = 2t2 = 2(15)2 = 450 meters and xs = 30t = (30)(15) = 450 meters (did
both of them to make sure they actually did come out to the same value).

How fast are the vehicles moving at this time? The speeder is moving at a constant 30 m/s.
The police car is accelerating, so v = vo + at = 0 + 4t = (4)(15) = 60 m/s (a bit over 130
miles/hour).



9. Two Objects : Car Chase (2) - adding a delay

Let’s modify the previous problem slightly by adding a delay. Suppose the police car doesn’t
start accelerating right away; instead let’s say it takes 2 seconds for the driver to react before
it starts accelerating after the speeder.

This causes a bit of a problem because we want to use the same coordinate system to describe
both vehicles but we can’t use our equations of motion unless the acceleration of each object
is constant. If we try to use the same coordinate system from the previous version of the
problem, then the police car has an acceleration of zero for two seconds and then 4 m/s2

thereafter. We have two different accelerations for the police car.

All is not lost though, suppose we just wait for two seconds and start t = 0 at that point.
Now the speeder still has their zero acceleration, and the police car has a constant 4 m/s2

acceleration from that point on.

The equation of motion for the police car will be the same then. It’s still starting at x = 0

with an initial velocity of 0, so xp = 0 + 0 + 1
2
(4 m/s2)t2 or xp = 2t2 just as before.

What about the speeder though? We’ve waited two seconds before defining the t = 0 point
but the speeder kept travelling during that time so is now some distance down the road.
xs = xo+ vot+

1
2
at2 but their xo is no longer zero. Where is the speeder located at this point?

It’s been travelling down the road at 30 m/s for 2 seconds, so apparently it’s 60 m along
the road now. It’s still moving at a constant 30 m/s (acceleration of zero) so the speeder’s
location will be xs = (60 m) + (30 m/s)(t) + 0 or xs = 60 + 30t .

When the police car catches up to the speeder, we have xp = xs or 2t2 = 60 + 30t which we
can rearrange into the usual quadratic form of: 2t2 − 30t− 60 = 0 or t2 − 15t− 30 = 0.

That quadratic equation has two solutions, t = −1.787 s and t = +16.787 s.

Only one of these is the actual physical solution though; the police car obviously doesn’t catch
up to the speeder until some time after it starts accelerating, so the true solution here must
be t = +16.787 s.

Where are the vehicles at this time? xp = 2t2 = 563.6 m or xs = 60 + 30t = 563.6 m also.

How fast are they moving? vs = 30 m/s (constant) and vp = vo + at = 0 + (4)(16.787) =
67.15 m/s (about 150 miles/hr, so probably a bit unrealistic).

In the rocket problem and these two chase problems, it was important to remember that all
our equations of motion are only valid when acceleration is a constant value over the entire
interval of interest. We can usually deal with this by breaking the problem up into intervals
where the acceleration is constant and solving each of these segments separately (or in the
case of the second version of the chase example, choosing a coordinate system where the
acceleration is constant over the interval of interest).


