
PH2213 Fox : Lecture 04
Chapter 3 : Kinematics in 2 or 3 Dimensions; Vectors

If you haven’t seen vectors before, please be sure to look over the first few sections of Chapter 3 in
the textbook.

We’ll go through their introduction quickly today and then start applying them to simple motion
problems.

Scalars vs Vectors

The various measurements we deal with can be broken into two broad categories: scalars and
vectors:

Scalar Vector (scalar with direction)

-------------- -------------------------------------

mass

weight

length

distance displacement (length in a direction)

temperature

speed velocity (wind, ocean currents)

Symbols:

Scalars are represented with variables like: x,y,z,m,t,T,d,... (that is, some letter).

Vectors are represented by a letter with the vector symbol over top of it: r⃗, F⃗ , v⃗

(Another common notation used in some textbooks is to just use a bold font for a vector variable:
r, for example.)

We’ve already encountered an important vector: g, which I can now
write more properly as g⃗, which has a magnitude of 9.80 m/s2 and a
direction of ‘down’ (pointing towards the center of the Earth, more or
less), making it definitely a vector quantity.



At it’s core, a vector is an abstract mathematical con-
struct that has a magnitude and a direction.

Technically that’s all it is: it isn’t attached to any partic-
ular location, but we’ll often do so when we use vectors
in practical, real-world situations.

Conventionally, the magnitude of a vector is denoted
by using the same symbol without the vector sign above
the symbol:

v = |v⃗|

Which leads to the polar coordinates representation of
the vector:
v⃗ = (v, θ)
This vector might represent a velocity of 20 m/s at an
angle of 60o relative to the +X axis, so we could write it
as v⃗ = (20 m/s, 60o).

We’ll see more of this in later slides, but mostly in this
course we’ll be using a Cartesian representation for vec-
tors, where we break down the vector into ‘components’
(basically projecting the vector onto each of our coordi-
nate directions).



Vector Addition

Suppose we have two displacement vectors: D⃗1 = (10 km to the East) and D⃗2 = (5 km to the North).

If we pace off D⃗1 (i.e. we walk 10 km to the East) and then pace offD⃗2 (i.e. we then walk 5 km to
the North), then our total trip is, in effect, the sum of these two segments. The result of ‘adding’
these two vectors is another vector that would represent a single straight path from the starting to
the ending point.

Resultant vector: D⃗1 + D⃗2 = D⃗R

If we do these two segments in the opposite order, we still end up at the same point though:

Resultant vector: D⃗2 + D⃗1 = D⃗R

Since the order didn’t matter, we see that Vector Addition is Commutative : A⃗+ B⃗ = B⃗ + A⃗



Parallelogram Method for adding vectors

Extending the picture from the previous page, adding two (or more) vectors basically means we’re
putting each vector’s tail where the previous vectors head was and accumulating the results as we
move along. The subfigure labelled b is worth highlighting because in the next chapter we’ll be
dealing with force vectors that are acting on some object in perhaps different directions and we’ll
need to add those vectors up to determine how the object reacts (moves). Even though the forces
are acting on the object, the act of summing the vectors is more generic than that. Technically,
a vector just has information about magnitude and direction and doesn’t refer to any particular
starting or ending point.



Multiplying a Vector by a Scalar

There are three types of multiplication involving vectors that we’ll end up using during the course,
but for now we’ll just focus on one of them: the result of multiplying a vector by a scalar.

The negative of a vector is a vector with
the same magnitude, but the opposite di-
rection.

Subtraction can then be
seen as adding the negative
of a vector:

(Interestingly, computer math chips often do the same thing: rather than have special parts of
the chip to handle subtraction, they just have a much quicker operation that ‘flips the sign’ of the
second number and then adds that to the first number.)

Multiplying a vector by a scalar
yields a vector in the same direc-
tion but whose magnitude has
been multiplied by that scalar.



Unit Vector (Cartesian) Representation

Since we can break down vectors into components (so much in the X direction, then so much in
the Y direction and so on, to construct the original vector), we can create another compact form
to represent them. First, we have one last definition:

The unit vectors are basically short-hand
for:

î = in the X direction
ĵ = in the Y direction
k̂ = in the Z direction

(Note: some textbooks may use a differ-
ent notation for these ‘unit vectors’: x̂ for
‘in the X direction’, ŷ for ‘in the Y direc-
tion’ and so on. Our textbook uses the
î, ĵ, k̂ convention, so please try and stick
with what our text uses.)

Looking back at page 3, vector D⃗1 represented a displacement of ‘10 km to the east’, and we defined
east to be our X direction so this would be 10 km in the +X direction, or D⃗1 = 10̂i (in units of
km).

Similarly, D⃗2 was ‘5 km to the north’, which would become D⃗2 = 5ĵ (in units of km).



Example : A hiker leaves camp and travels 200 m to the northeast,
then 100 m directly to the east. If we want to fly a drone directly from
the camp to where they are now located, how far and in what direction
does the drone need to fly?

Let’s sketch this out first, using a coordinate system
where East is in the +X direction, and North is the +Y
direction (a fairly typical choice).

A⃗ is 200 m long and is to the ‘northeast’ which means
it’s midway between north and east, representing a 45o

angle counterclockwise from the +X axis.
B⃗ is 100 m long and is entirely towards the ‘east’ which
is our +X direction.
The dotted line then represents the vector sum of these
two segments of the trip.

In class, we first ‘solved’ this problem just using geometry and trig, but let’s skip straight to the
method of converting each of these segments separately into our unit-vector notation scheme.

A⃗ is 200 m long and makes a 45o angle with the X axis,
so we can create the same vector by walking Ax along
the X axis (in the î direction), then turning north and
walking Ay along the Y axis (i.e., in the ĵ direction).
Ax = A cos θ = (200 m) cos (45o) = 141.4 m
Ay = A sin θ = (200 m) cos (45o) = 141.4 m

So: A⃗ = 141.4̂i+ 141.4ĵ (in units of meters).

B⃗ is 100 m long and is entirely in the X direction, so
we can convert this vector easily: B⃗ represents walking
100 m in the X (that is, î) direction, then walking not at

all (zero meters) in the Y direction. B⃗ = 100̂i+ 0ĵ

We can do the sum now:
C⃗ = A⃗+ B⃗ = (141.4̂i+ 141.4ĵ) + (100̂i+ 0ĵ)
Now, the X and Y directions are independent, so we need
to combine only like terms. Collecting the î and ĵ terms
separately:
C⃗ = (141.4 + 100)̂i+ (141.4 + 0)ĵ or finally:

C⃗ = 241.4̂i+ 141.4ĵ

The magnitude of C⃗ will be C = |C⃗| =
√
(241.4)2 + (141.4)2 = 279.8 m.

We have all three sides of the triangle now so could use any trig function to determine the angle θ
but since C was calculated from the lengths of the two sides, it’s less accurate. The preferred way
of getting θ here would be tan θ = 141.4/241.4 from which θ = 30.4o.



Example 3-2 (modified) : Mail carrier’s displacement.

A rural mail carrier leaves the post office and drives 22.0 km
in a northerly direction. She then drives in a direction 60.0o

south of west for 47.0 km (see figure at right). What is her
displacement from the post office?
NOTE : see the book version of this example first. In that
one, the mail carrier’s second segment is in a different di-
rection. The modification here creates a resultant vector in
the third quadrant, which causes difficulties properly deter-
mining the angle, which is the point I’m focusing on in this
modified version of the problem, since it’s something you’ll
often encounter moving forward.
APPROACHWe choose the positive X axis to be east and
the positive Y axis to be north, since those are the compass
directions used on most maps. The origin of this xy coor-
dinate system is at the post office. We resolve each vector
into its x and y components. We add the x components to-
gether, and then the y components together, giving us the
x and y components of the resultant.
SOLUTION Resolve each displacement vector into its
components, as shown in the middle figure on the right.
Since D⃗1 has magnitude 22 km and points north, it only
has a y component:

D1x = 0, D1y = 22.0 km.

D⃗2 has both x and y components:
D2x = −(47 km) cos (60o) = −23.5 km
D2y = −(47 km) sin (60o) = −40.7 km

Notice that D2y and D2x are negative because those com-
ponents points in the negative y and negative x directions
respectively. We could also get the signs to come out cor-
rectly in the first place if we use the ACTUAL angle for
this vector, which means using an angle that starts with
θ = 0 in the +X axis direction. In that case, our AC-
TUAL angle here would be 180+ 60 = 240o so for example:
D2x = (47 km)(cos (240o) = −23.5 km with the sign coming
out correct automatically.
The resultant vector D⃗ = D⃗1 + D⃗2 has components:

Dx = D1x +D2x = 0.0− 23.5 = −23.5 km
Dy = D1y +D2y = 22.00 + (−40.7) = −18.7 km

CONVENTIONS : Let’s express that answer in the three conventions we talked about.

Cartesian : D⃗ = (−23.5 km , − 18.7 km)

Unit vectors : D⃗ = −23.5̂i− 18.7ĵ (in units of km)

(see next page for the conversion to polar form)



Polar : Here we’ll need to get the magnitude and angle for D⃗. The magnitude we can find via the

pythagorean theorem: D = |D⃗| =
√
(Dx)2 + (Dy)2 =

√
(−23.5)2 + (−18.7)2 =

√
552.25 + 349.69 =

30.03 km. (NOTE: since our ‘inputs’ here only had three significant figures, we should probably
write this result using no more than three significant figures also, so D = 30.0 km would be more
appropriate.)

Finding the correct angle turns out to be surprisingly difficult though.

Remember: we define the angle in polar notation to be measured around counter-clockwise, starting
at the +X axis. For example:

• the +X axis represents θ = 0o

• the +Y axis would be θ = +90o

• the negative X axis would be θ = 180o

• the negative Y axis would be θ = 270o

If we use the ‘standard’ unit-circle definition of tan θ = y/x we have tan θ = (−18.7)/(−23.5) =
+0.7957... from which θ = +38.5o but looking at the previous figures that can’t be right. The
angle we need, measured starting at the X axis and going around counter-clockwise obviously is
something larger than 180o.

The fundamental problem is that all the trig functions are periodic which means that all the
inverse trig functions (arc-sine, arc-tangent, etc) have an infinite number of solutions. The
math chip in your calculator or computer has to pick just one and it might not be the right one for
the problem you’re solving.

One safe approach I usually take is to ignore all
the signs of the numbers in the figure and treat
the triangle as something physical, cut out of card-
board maybe, with the numbers representing the
(positive) actual lengths of the sides of that trian-
gle.
In that case, we can find tanα = 18.7/23.5 from
which α = 38.5o.
Now we can look back at the actual scenario
and see that the angle θ we need can be found
by adding 180o to the angle α we just found.
Here then, the angle θ we’re looking for is θ =
38.5 + 180 = 218.5o.

Finally then, in polar notation: D⃗ = (30.0 km , 218.5o)


