
PH2213 Fox : Lecture 05
Chapter 3 : Kinematics in 2 or 3 Dimensions; Vectors

Analyzing 2- and 3-dimensional Motion

If we roll a ball off the edge of a table, it follows a path (which will turn out to be a parabola)
through the air on the way to the ground. The ball is no longer moving in a straight line, so we’ll
need to use a 2D or 3D coordinate system to fully describe it’s motion.

An object moving in a straight line only needs a single coordinate (x perhaps) to specify it’s motion,
but an object moving arbitrarily through space potentially needs x, y, and z. This triple (x, y, z)
can be seen as the components of a position vector giving the location of the object.

Position: r⃗(t) = x(t)̂i+ y(t)ĵ + z(t)k̂

Displacement: ∆r⃗ = r⃗2 − r⃗1

Average Velocity:

• v⃗avg = ∆r⃗/∆t

Velocity:

• v⃗(t) = dr⃗
dt

• v⃗(t) = dx
dt
î+ dy

dt
ĵ + dz

dt
k̂

• v⃗(t) = vxî+ vy ĵ + vzk̂



Average acceleration: a⃗avg = ∆v⃗/∆t

Acceleration: a⃗(t) = dv⃗
dt

= dvx
dt
î+ dvy

dt
ĵ + dvz

dt
k̂ = axî+ ay ĵ + azk̂

Constant Acceleration:

• a⃗ is the SLOPE of the v⃗ ‘graph’

• IF a⃗ = constant, THEN v⃗(t) is a ‘line’ (in 3-space):

• v⃗(t) = v⃗o + a⃗t

Constant Acceleration: a⃗ is the SLOPE of the v⃗ ‘graph’, so if a⃗ = constant, then v⃗(t) is a ‘line’ (in
3-space).

The v⃗(t) equation must be such that when we differentiate it, we get a constant (the constant

acceleration). That means it must be in the form: v⃗(t) = v⃗o + a⃗t

giving us our first vector equation of motion.

We can keep going the same way we did with 1-D motion and the result is a complete set of vector
equations of motion that look identical to the 1-D equations we already have:

Vector Equations of Motion

Summary : 1-D vs Vector Definitions and Equations
Location x r⃗
Displacement ∆x ∆r⃗
time interval ∆t ∆t
Average velocity vavg = ∆x/∆t v⃗avg = ∆r⃗/∆t
Instantaneous velocity v = dx/dt v⃗ = dr⃗/dt
Average acceleration aavg = ∆v/∆t a⃗avg = ∆v⃗/∆t
Instantaneous acceleration a = dv/dt a⃗ = dv⃗/dt

Equations of Motion : when a or a⃗ are CONSTANT
v = vo + at v⃗ = v⃗o + a⃗t

vavg = vo +
1
2
at v⃗avg = v⃗o +

1
2
a⃗t

x = xo +
1
2
(vo + v)t r⃗ = r⃗o +

1
2
(v⃗o + v⃗)t

x = xo + vot+
1
2
at2 r⃗ = r⃗o + v⃗ot+

1
2
a⃗t2

v2 = v2o + 2a∆x v2 = v2o + 2ax∆x+ 2ay∆y + 2az∆z



Free-fall motion : the object is only moving under the influence of gravity, which means it
has an acceleration vector directed downward towards the earth (or moon, or other object).
The magnitude of the acceleration due to gravity at the surface of the earth is approximately
|a| = g = 9.80 m/s2.

• The symbol g is always a positive constant.

• IF our vertical coordinate is Y with positive UP: ay = −9.8 m/s2 (and ax = az = 0)

• IF our vertical coordinate is Y with positive DOWN: ay = +9.8 m/s2 (and ax = az = 0)

Note that a vector equation is really three separate 1-D equations combined: one for
each coordinate direction.

v⃗ = v⃗o + a⃗t really means:

• vx = vox + axt and

• vy = voy + ayt and

• vz = voz + azt

In practice then, 2-D and 3-D motion starts off with vector equations but calculators (and comput-
ers) rarely work directly on vector quantities, so we end up turning the problem into (potentially)
three separate problems: what’s happening in X, Y and Z separately.

We’ll exercise this idea in today’s examples.



Example 1 : A skier starts at rest and
slides down a perfectly flat slope that is
angled 15o below the horizontal. They
are observed to have an acceleration of
2.1 m/s2 along the slope.

Four seconds later, how far have they travelled and how fast are they moving?

• Using the coordinate system shown...

• Using a coordinate system where the (X,Y) axes have been rotated so that X points down
along the slope.

Using the coordinate system shown in the figure.

In this coordinate system, our vector a⃗ is making an angle 15o

below the X axis, so converting this into X and Y components.
Ignoring signs, the magnitudes of these components will be:
ax = a cos θ = (2.1 m/s2)(cos (15o)) = 2.028 m/s2

ay = a sin θ = (2.1 m/s2)(sin (15o)) = 0.5435 m/s2

And looking at the figure, ax will be positive, but ay will be
negative, so ax = +2.028 m/s2 and ay = −0.5435 m/s2.

Better: since that angle is below the +X axis and we’re supposed to measure positive angles
around counter-clockwise from that axis, technically this angle is actually θ = −15o so we can get
the actual signed values of the components directly:

ax = a cos θ = (2.1 m/s2)(cos (−15o)) = +2.028 m/s2

ay = a sin θ = (2.1 m/s2)(sin (−15o)) = −0.5435 m/s2

X equations of motion

• x = xo + yot+
1
2
axt

2 so here x = 0 + 0 + (0.5)(2.028)t2 or x = 1.014t2 so at t = 4 the skier
will be located at x = 16.22 m.

• vx = vox + axt so here vx = 0 + 2.028t and at t = 4 we have vx = +8.112 m/s.

Y equations of motion

• y = yo+yot+
1
2
ayt

2 so here y = 0+0+(0.5)(0.5425)t2 or and at t = 4 the skier will be located
at y = −4.34 m.

• vy = voy + ayt so here vy = 0− 0.5425t and at t = 4 we have vy = −2.17 m/s.



Converting these components into the overall distance travelled and the speed at t = 4:

Distance Travelled

d =
√
x2 + y2 =

√
(16.22)2 + (−4.34)2 = 16.79 m

Speed

v = |v⃗| =
√
(8.112)2 + (−2.17)2 = 8.397.. m/s

Using a rotated coordinate system.

If we rotate our axes so that X actually lines up
with the sloping ground, then our vector acceler-
ation a⃗ is entirely in the X direction now, which
means that ax = 2.1 m/s2 and ay = 0.

This greatly simplifies our equations of motion.

In the Y direction, the skier starts at rest at the origin so y(t) = yo+ voyt+ ayt
2 = 0+0+0 = 0.

The skier’s Y coordinate just remains at y = 0 throughout the scenario. Also, vy = voy + ayt
becomes vy = 0 + 0 = 0 : the Y component of the velocity is also zero throughout.

In the X direction, since the acceleration vector is entirely in the X direction now, ax = 2.1 m/s2.

Starting at rest at the origin, we have x(t) = xo + voxt + axt
2 = 0 + 0 + (0.5)(2.1)t2 or simply

x(t) = 1.05t2. At t = 4 s, the skier will be located at x = 16.8 m (and y = 0), so the total distance

travelled will be d =
√
(16.8)2 + (0.0)2 = 16.8 m exactly.

The X velocity will be vx(t) = vox+axt = 0+(2.1)(t) so at t = 4 we’ll have vx = (2.1)(4) = 8.4 m/s

exactly. The skier’s speed at that point then will be v = |v⃗| =
√
(8.4)2 + (0.0)2 = 8.40 m/s

exactly.

Choosing this rotated coordinate system significantly reduced the amount of work
needed to solve the problem (and gave us a more accurate result).



Example 2 : A ball moving (horizontally) at 2 m/s rolls off the side of a table that
is 1.0 m above the floor.

1. Where will the ball land?

2. How long does it take to reach the floor?

3. How fast is it moving when it hits the floor?

4. At what angle does it hit the floor?

NOTE: this is essentially example 3 in the examples pdf
for chapter 3, but here I’ll use a different coordinate system
(and the initial velocity of the ball is different here). That
pdf has a much wordier description of the process which I
won’t repeat here, so you may want to review that example
first.
Here then, with our choice of coordinate system, the ball’s
initial velocity is entirely in the X direction: v⃗o = (2 m/s)̂i.
The acceleration will be g⃗ which is a vector with a magni-
tude of |⃗g| = g = 9.8 m/s2 and a direction that is straight
down, so we would write that as a⃗ = (−9.8 m/s2)ĵ.

In terms of components then, we have:
vox = 2 m/s voy = 0 m/s voz = 0 m/s
ax = 0 m/s2 ay = −9.8 m/s2 az = 0 m/s

Looking at the x equation of motion : x(t) = xo + voxt +
1
2
axt

2 becomes x(t) = 0 + 2t + 0

or simply x(t) = 2t . (Everything was in standard metric units already so I dropped writing the

units; here with t in seconds, this equation would give the x coordinate in meters.)

Looking at the y equation of motion : y(t) = yo + voyt +
1
2
ayt

2 becomes y(t) = 1 + (0)(t) +
1
2
(−9.8)t2 or simply y(t) = 1− 4.9t2 .

Those two boxed equations are what’s called parametric equations: they basically give the values
(here) of x and y as a function of t. We’d use these directly if we wanted to create a computer
animation of the ball flying through the air realistically. Each frame of the video represents a
particular time, and these equations give us where the ball should be rendered in the scene.

When the ball hits the floor, we don’t know where or when that happens, but we do know that
y = 0 at that point, so we can use our y(t) equation of motion to determine when that happens:

y(t) = 1− 4.9t2 → 0 = 1− 4.9t2

Rearranging: t =
√
(1/4.9) = ±0.452 s.

We know the ball hits the ground after it was released, so the correct solution must be t = +0.452 s .

Now that we know how long the ball was in flight, we can find how far it’s travelled horizontally:
x(t) = (2 m/s)(t) = (2 m/s)(0.452 s) = 0.904 m.

The ball was apparently in flight for just under a half a second, and it hit the floor about 90 cm
from the edge of the table.



Speed and angle at which the ball hits the floor
Please look over the similar section in example 3 in the
examples03.pdf file.
We can use our velocity equations of motion to determine
the components of the velocity vector at the instant the
ball hits the floor:
vx(t) = vox + axt so here vx(t) = 2 + (0)(t) = 2 m/s
(constant)
vy(t) = voy +ayt so here vy(t) = 0+(−9.8)(t) = −9.8t so
at the floor vy(0.452 s) = −9.8(0.452) = −4.42 m/s.

The speed will be the magnitude of v⃗, which is essentially just the hypoteneuse of the triangle in the

figure: |v⃗| =
√
(v2x + v2y + v2z) =

√
(2)2 + (−4.43)2 + (0)2 = +4.86 m/s. (Note there’s no ambiguity

about the sign here, since the magnitude of a vector is defined as |v⃗| and those bars act just like
they do when we take the absolute value of a number. The result is always non-negative.)

What should the angle be?
From the figure on the right, we can write sin θ = Y/R,
cos θ = X/R, and tan θ = Y/X, so what do we get here?

sin θ = −4.43/4.86 from which θ = −65.7o

cos θ = +2.00/4.86 from which θ = +65.7o

tan θ = −4.43/2.00 from which θ = −65.7o

We obviously have a problem with the sign here. Which should it be? Looking at the figure, θ is
obviously some angle below the X axis, so the negative angle would be the right one but why are
we getting different results?

The basic problem is that the trig functions repeat them-
selves. If we’re looking for the solution of, say, sin θ = 0.5
there are actually an infinite number of solutions, so
which one should a calculator provide? The algorithm
for ARCSIN in a calculator has to choose a particular
range of angles, and in the case of ARCSIN the answer
will always be in the range of −90o to +90o. Ditto for
ARCTAN. In the case of ARCCOS, the answer will al-
ways be in the range of 0o to 180o.

It’s important to treat the output from any ARC-trig function on your calculator with a grain of
salt, and we’ll see this occurring repeatedly throughout the semester.

The safest way to find the angle is probably to initially ignore the signs of the sides of the triangle.
The physical triangle has sides of 2 and 4.43 and tan θ = 4.3/2 nominally gives us an angle of
θ = 65.7o. Now we can look at the picture and see what that angle really is. It’s 65.7o below the
X axis, to that would be either θ = −65.7o or if we want to measure all the way around positive
from the X axis, it would be θ = 360− 65.7 = 294.3o.



Example 3 : Hilbun has a flat roof and we’d like to measure it’s height. We roll a ball
off the roof (so it’s moving horizontally initially) at some unknown speed vo. Exactly
1.60 sec later, the ball hits the flat ground below after travelling 10 m horizontally.

1. What was the initial velocity vo of the ball?

2. How tall is the building?

3. How fast is the ball moving when it hits the ground?

4. At what angle does it hit the ground?

This looks similar to the previous problem, but we have different information now. We don’t know
the initial height or velocity, just that it’s horizontal. Instead, we have information about the later
point: when and where the object hit the ground.

Coordinate System and Knowns : The same solution method applies though: we’ll break the
vector equation of motion into separate equations in X and Y and see what we know where. Let’s
use the same coordinate system as in the previous problem. Then a⃗ = g⃗ becomes ax = 0 and
ay = −9.8 m/s2 (since our positive Y axis is upward). We also know that the ball was initially
moving horizontally, so vox = vo and voy = 0. In this coordinate system, the ball starts at xo = 0
and yo = h (the height of the building). When it hits the ground, we’ll have y = 0 and x = 10 m.

Looking at the x equation of motion : x(t) = xo + voxt+
1
2
axt

2 becomes x(t) = 0 + voxt+ 0 or

simply x(t) = voxt . (Everything was in standard metric units already so I dropped writing the

units; here with t in seconds, this equation would give the x coordinate in meters.)

Now we know that at t = 1.60 s the object is located at x = 10 m so we can immediately find
the X component of the initial velocity: 10 = (vox)(1.6) or vox = 6.25 m/s and since the ball was

launched horizontally, this is in fact vo also. vo = 6.25 m/s and we’re halfway done already.

Looking at the y equation of motion : y(t) = yo + voyt +
1
2
ayt

2 becomes y(t) = h + (0)(t) +
1
2
(−9.8)t2 or simply y(t) = h− 4.9t2 .

Now we know that at t = 1.6 s, the ball has reached the ground (y = 0) so: 0 = h− (4.9)(1.6)2 or

h = 12.544 m .



Ball Kicked at Angle
A ball is kicked from the top edge of a 15 m tall
building at 20 m/s, at an angle of θ = 30o above
the horizontal.

(a) How much time does the ball spend in the
air?

(b) How far from the building will the ball land?

Using the coordinate system shown, what do we know?

• the ball starts at xo = 0, yo = 15 m

• the ball has an initial velocity of 20m/s at 30o above the horizontal (i.e. above the X direction)
so vox = vo cos (30

o) = 17.32 m/s and voy = vo sin (30
o) = 10.00 m/s

• the acceleration here is a⃗ = g⃗ so 9.8 m/s2 straight down. That makes ax = 0 and ay =
−9.8 m/s2.

• At the landing point, we know nothing except that y = 0 there.

Breaking the problem into the X and Y direction:

X direction Y direction
x(t) = xo + voxt+

1
2
axt

2 y(t) = yo + voyt+
1
2
ayt

2

Substituting in the variables we know:
x(t) = 0 + 17.32t+ 0 y(t) = 15 + 10t− 4.9t2

Which is as far as we can go for now. At the ground, y = 0 so we can find the time
when that occurs: 0 = 15 + 10t− 4.9t2

Solving that quadratic equation:
t = −1.005 s or t = +3.046 s
The ball hits the ground some time after it
was launched, so the solution must be t =
+3.046 s

Evaluating at t = 3.046 s:
x = (17.32 m/s)(3.046 s) = 52.76 m

The ball was in the air for 3.026 sec and landed 52.76 m away from the building.



Let’s look at a ‘reverse’ version of the previous problem. Suppose we know where the
ball landed and how long it spent in the air (both easily measureable) and use that information to
determine the initial launch velocity (speed and angle).

A ball is kicked from the top edge of a 15 m tall
building at some unknown speed and angle. Ex-
actly 3 seconds later, it lands 30 meters from the
building.

(a) Determine the velocity at which the ball was
launched (speed and angle).

Using the coordinate system shown, what do we know?

• the ball starts at xo = 0, yo = 15 m

• the acceleration here is a⃗ = g⃗ so 9.8 m/s2 straight down. That makes ax = 0 and ay =
−9.8 m/s2.

• At the landing point, we know that x = 30 m and y = 0 at t = 3 s.

Breaking the problem into the X and Y direction:

X direction Y direction
x(t) = xo + voxt+

1
2
axt

2 y(t) = yo + voyt+
1
2
ayt

2

Substituting in the variables we know:
x(t) = 0 + voxt+ 0 y(t) = 15 + voyt− 4.9t2

We know the X and Y values at t = 3:
30 = 0 + (vox)(3) 0 = 15 + (voy)(3)− 4.9(3)2

And we can immediately find the initial velocity:
vox = 30/3 = 10 m/s Rearranging and solving for voy :

voy = 9.70 m/s

We know the components of v⃗o now so can find the speed and angle of the ball when it hits the
ground:

vo =
√
(vox)2 + (voy)2 =

√
(10)2 + (9.7)2 = 13.93 m/s

tan(θ) = voy/vox = 9.7/10 from which θ = 44.1o

(From the original picture, we see that the launch angle is somewhere between 0o and 90o, putting it
in the first quadrant. All the inverse-trig functions on your calculator ‘work’ and return the correct
angle when we’re in this quadrant.)



Addendum for Example 2

(Not part of this class, but interesting for Math nerds...)

Let’s look at Example 2 again, where we had a ball rolling off the side of a table.

Originally we used a fixed (x, y) coordinate system to define the position of the ball. This time,
let’s try to use a 1-d coordinate where the position is just how far the ball has travelling along
it’s path through the air.

We do know the exact x(t) and y(t) positions of the ball in our original coordinate system, so
we can calculate that millisecond by millisecond and determine how far the ball travelled in each
millisecond, then just keep accumulating those results to find how far it’s travelled along its path.
(This can also be done exactly using a parametric integral which I think you see in Cal 2 or Cal
3 but doing it numerically like this is good enough to illustrate a problem.)

Now that we have the distance travelled (millisecond by millisecond) we can determine the ball’s
speed along the path (millisecond by millisecond) and from that we can find it’s acceleration.

Position (along path) Speed (along path)

Now, acceleration is the (instantaneous) slope
of the ‘velocity’ graph, which isn’t a perfectly
straight line, so it’s derivative won’t be a constant
value. This graph shows the acceleration vs time
for the ball. It’s not constant, starting at 0 the
instant the ball leaves the table, and gradually
increasing. If the ball could fall long enough, it
would eventually reach 9.8 m/s2.
The problem here is that acceleration isn’t con-
stant, which means we can’t use our equations
of motion to analyze its motion.

Acceleration (along path)

The package of equation of motion we have only applies when acceleration is constant. Using the
fixed coordinate system makes that happen here since a⃗ = g⃗ which is a constant as long as our
scenario allows us to pretend the Earth is flat.


