
PH2213 Fox : Lecture 06
Chapter 3 : Kinematics in 2 or 3 Dimensions; Vectors

Today we’ll wrap up the 2-D motion topic by adding a few more useful equations and work through
some additional examples.

Vector Equations of Motion

Summary : 1-D vs Vector Definitions and Equations
Location x r⃗
Displacement ∆x ∆r⃗
time interval ∆t ∆t
Average velocity vavg = ∆x/∆t v⃗avg = ∆r⃗/∆t
Instantaneous velocity v = dx/dt v⃗ = dr⃗/dt
Average acceleration aavg = ∆v/∆t a⃗avg = ∆v⃗/∆t
Instantaneous acceleration a = dv/dt a⃗ = dv⃗/dt

Equations of Motion : when a or a⃗ are CONSTANT
v = vo + at v⃗ = v⃗o + a⃗t

vavg = vo +
1
2
at v⃗avg = v⃗o +

1
2
a⃗t

x = xo +
1
2
(vo + v)t r⃗ = r⃗o +

1
2
(v⃗o + v⃗)t

x = xo + vot+
1
2
at2 r⃗ = r⃗o + v⃗ot+

1
2
a⃗t2

v2 = v2o + 2a∆x v2 = v2o + 2ax∆x+ 2ay∆y + 2az∆z

Free-fall motion : the object is only moving under the influence of gravity, which means it
has an acceleration vector directed downward towards the earth (or moon, or other object).
The magnitude of the acceleration due to gravity at the surface of the earth is approximately
|a| = g = 9.80 m/s2.

• The symbol g is always a positive constant.

• IF our vertical coordinate is Y with positive upward: ay = −9.8 m/s2

• IF our vertical coordinate is Y with positive downward: ay = +9.8 m/s2



Example : Baseball Landing on the Roof of a Building

Suppose we hit a baseball such that it
leaves the bat at a speed of 27.0 m/s at
an angle of 45o. At that instant, the ball is
1.0 m above the ground. Some time later,
it lands on the rooftop of a nearby build-
ing at a point that is 13.0 m above the
ground level. What horizontal distance did
the ball travel? How long was it in the air?
What maximum height did it reach? How
fast is it moving when it hits the roof?

Coordinates : Let’s put the origin on the ground right under where the ball was struck, with +X
to the right and +Y vertically upward. That means the ball starts at xo = 0, yo = 1.0 m and ends
at y = 13.0 m (and x unknown).

The ball is ‘launched’ at a speed of 27.0 m/s at an angle of θ = 45o up from the horizontal, which
means that vox = vo cos θ = (27.0m/s) cos 45o = 19.09m/s and voy = vo sin θ = (27.0m/s) sin 45o =
19.09 m/s.

The general equation of motion for the ball in the X direction is: x = xo + voxt+
1
2
axt

2 so with our

choice of coordinates: x = 0.0 + (19.09)(t) + 0 or just x(t) = 19.09t .

The general equation of motion for the ball in the Y direction is y = yo + voyt +
1
2
ayt

2 so with our

choice of coordinates: y = 1.0 + 19.09t+ 1
2
(−9.8)t2 or just y(t) = 1 + 19.09t− 4.9t2 .

We can use this last equation to find how long it takes the ball to reaches the roof, since at that
point y = 13.0 m so:

13 = 1+19.09t−4.9t2 which we can rearrange into: 4.9t2−19.09t+12 = 0. This quadratic equation

will have two solutions: t =
19.09±

√
(19.09)2−(4)(4.9)(12)

(2)(4.9)
or t = 0.788 s and t = 3.108 s .

Both of these are positive, but which is the correct solution? Looking at the figure, we see that
the ball passes through y = 13 on the way up and then again reaches it on the way down (at which
point it hits the roof) so apparently it’s the second solution that corresponds to the ‘hitting the
roof’ situation.

Horizontal distance (x) : Now that we know that the ball lands on the roof at t = 3.108 s, we
can find its X coordinate at that point: x = (19.09 m/s)(t) = (19.09 m/s)(3.108 s) = 59.33 m.

How high up did the ball fly? At the apogee point, the ball is still moving horizontally but
has (momentarily) stopped moving vertically. At that point vy = 0. vy = voy + ayt but we know
voy = 19.09 m/s and ay = −9.8 m/s2 so this becomes: 0 = 19.09 − 9.8t or t = 1.948 s. Plugging
this into the y(t) equation of motion we found above, we find ymax = 19.6 m.

Another approach: Apply v2 = v2o + 2ax∆x + 2ay∆y between the launch point and the apogee
point. ax = 0 so this reduces to: v2 = v2o + 2ay∆y. At launch, v = 27 m/s. At the apogee point
vx = vox = 19.09 m/s and vy = 0 so at that point v = 19.09 m/s so: (27)2 = (19.09)2+(2)(−9.8)∆y
from which ∆y = 18.60 m. REMEMBER THOUGH: that’s just the CHANGE in y between



those two points, and since we started at yo = 1, the y coordinate at the apogee point would be
1 + 18.60 = 19.60 m (same as we found the other way).

How fast was the ball moving when it hit the roof?

v2 = v2o+2a∆y and here ∆y = yfinal−yinitial = 13.0−1.0 = 12.0m so v2 = (27.0)2+(2)(−9.8)(12) =
729− 235.2 = 493.8 or v =

√
493.8 = 22.22 m/s.

Another approach: vx(t) = vox + axt but ax = 0 so vx(t) = vox = 19.09 m/s and never changes.
vy(t) = voy+ayt = 19.09−9.8t so when the ball hits the roof at t = 3.108 s we find vy = −11.368m/s.
Combining those: v2 = v2x + v2y which yields |v| = 22.22 m/s (same result).



Anvil Toss : Version 1 : (1-D motion ) : There is a group of people who launch
anvils into the air using high explosives. The claim in one video is that the anvil
reached a height of 200 ft. Given all the dust involved, actually measuring the height
would be difficult, so they actually infer the height by measuring the time from when
the anvil is launched until it lands on the ground. Suppose this anvil was in the air for
8 seconds and landed at the same spot it was launched from (i.e. it’s only moving
vertically up and down).
Determine the anvil’s launch speed and maximum height.

For this problem, we’re assuming the anvil is launched perfectly vertically so it will just go straight
up and down. Let’s use a Y axis with +Y vertically upward, starting with an origin down on the
ground. At t = 0 the anvil is launched upward with some vertical velocity v⃗o, and exactly 8 seconds
later it lands at the same point.

Our Y equation of motion here is: y(t) = yo + voyt +
1
2
ayt

2 and here we’re starting at yo = 0 and
have an acceleration of ay = −9.8 m/s2 (⃗a = g⃗ here, which is a vector of magnitude 9.8 m/s2 and
a direction vertically downward, but our +Y is vertically upward).

That lets us write: y(t) = 0 + voyt+
1
2
(−9.8)t2 or y(t) = voyt− 4.9t2 .

We do know that at t = 8 the object has returned to y = 0 so evaluating that equation at t = 8
yields:

0 = (voy)(8)− (4.9)(8)2 which we can rearrange to find voy = 39.2 m/s . (The anvil was apparently

launched vertically upward at about 88 miles/hr.)

How high up will the anvil fly?

The anvil will fly upwards for a while, reach a maximum height (apogee) where the velocity becomes
zero, then fall back down to the ground. We can use our velocity equation of motion to determine
the time:

vy(t) = voy + ayt so vy(t) = 39.2− 9.8t. At the apogee, vy = 0 so 0 = 39.2− 9.8t implies that this
apogee is reached at t = 4 sec.

Since we know the launch velocity, we can use the y equation of motion to determine the maximum
height, since that will be the anvil’s y coordinate at exactly t = 4 s into the flight.

y(t) = 39.2t − 4.9t2 and evaluating that at t = 4 yields ymax = 78.4 m, or about 257 feet (a bit
higher than the 200 feet the video claimed).

Another Approach

We can also use our v2 equation to determine the maximum height. If we focus on the interval
between launch and the time it reaches the apogee (where v drops to zero momentarily), we have:

v2y = v2oy + 2ay∆y so here:

(0)2 = (39.2)2 + (2)(−9.8)∆y which yields ∆y = +78.4 m also.

∆y = yapogee − yinitial so 78.4 = ymax − 0 or ymax = 78.4 m again.



Anvil Toss : Version 2 : (2-D motion ) : What if another anvil is in the air for
8 seconds but lands 20 meters away from where it was launched?
Determine the anvil’s launch speed (and angle) and maximum height.

Coordinates

• origin at launch point

• +X to the right

• +Y up

• t = 0 at instant of launch

Knowns

• a⃗ = g⃗ so ax = 0, ay = −9.8 m/s2

• xo = 0, yo = 0

• at t = 8 : x(8) = 20 m and y(8) = 0

Let’s apply our generic equations of motion and see what we find:

X direction : x(t) = xo + voxt+
1
2
axt

2

substituting in the values we know on the RHS: x(t) = 0 + voxt+ 0. At the landing point, we know

x = 20 m at t = 8 so: 20 = (vox)(8) from which vox = 2.5 m/s .

Y direction : y(t) = yo + voyt+
1
2
ayt

2

substituting in the values we know on the RHS: y(t) = 0+voyt+
1
2
(−9.8)t2 or y(t) = voyt−4.9t2. At

the landing point, we know y = 0m at t = 8 so: 0 = (voy)(8)−4.9(8)2 from which voy = 39.2 m/s .

Note that this anvil actually had the same vertical velocity as our first anvil.

Max height : How high in the air did this anvil go? Let’s apply one of our v2 equations: v2y =

v2oy + 2ay∆y to the segment between the launch point and the point where the anvil has reached
it’s maximum height. At that point it’s vertical velocity component has dropped to zero. It’s
still moving horizontally at a constant 2.5 m/s, but it’s stopped moving upward for an instant
before starting to drop back down towards the ground. At that point then, vy = 0 so: (0)2 =
(39.2)2 + (2)(−9.8)(∆y) from which ∆y = 78.4 m. At this point, it’s exactly 78.4 m above where
it was launched from. That is the same height the previous (perfectly vertically launched) anvil
reached, so we have a tie here.



Launch speed and angle

We have the X and Y components of the initial
velocity, so:

vo = +
√
(vox)2 + (voy)2 or:

vo = +
√
(2.5)2 + (39.2)2 = 39.3 m/s (about).

The launch angle we can find from: tan θ =
voy/vox = 39.2/2.5 from which θ = 86.35o.

This anvil was apparently launched with a
slightly higher velocity than the first one, but
a few degrees off from vertical.



Specialized Projectile Motion Equations
Object launched at origin with v⃗o = (vo, θ)

First, let’s derive some special-purpose equations
that we can apply for certain types of motion, specifically
for trajectories where the starting and ending points are
at the same elevation.
We’ll use a coordinate system with the origin at the
launch point, and with +X to the right (pointing over
towards where the object will land) and with +Y verti-
cally upward.
For as long as it’s in flight, the object will undergo an
acceleration of a⃗ = g⃗, so in our chosen coordinate system
the components will be ax = 0 and ay = −g . (Note

that g = |⃗g| is always a positive number. The acceler-
ation may be positive or negative depending on our co-
ordinate system choice, but the symbol g itself always
represents a positive value.)
If the object is launched with an initial speed vo at an
angle of θ (relative to the horizontal) then vox = vo cos θ

and voy = vo sin θ .

Apogee time: tA : at this point vy has become zero so using our equation of motion for the vertical
velocity: vy = voy + ayt or in our coordinate system: vy = voy − gt. At the apogee point, t = tA and

vy = 0 so 0 = voy − gtA from which tA = voy/g or in its usual form: tA = vo sin (θ)/g

Landing time : at this point, y has returned to 0, so starting with the Y equation of motion:

y(t) = yo + voyt +
1
2
ayt

2 becomes: 0 = 0 + voyt − 1
2
gt2. Rearranging, we find t = 2voy/g. That is

exactly twice the apogee time we just found, so the landing time is: tlanding = 2tA = 2vo sin (θ)/g

(BE CAREFUL with this one though: this time is ONLY valid if the object returns back to the
same elevation (same Y coordinate) it was launched from.)

Max height: ymax or h : this would be the y(t) value at t = tA, so we can just evaluate the Y

equation of motion at that time. y(t) = yo + voyt+
1
2
ayt

2 or here y(t) = 0 + voyt− 1
2
gt2.

Using t = tA = voy/g we find that h = ymax = v2oy/(2g) or in the usual form: h = v2o sin
2 θ/(2g) .

Range: R : Finally, the range will be the X coordinate at t = 2tA. In general: x(t) = xo +

voxt +
1
2
axt

2 or here x(t) = 0 + voxt + 0 or just x(t) = voxt. Evaluating this at t = 2tA using the
result from above: R = 2voxvoy/g, but vox = vo cos θ and voy = vo sin θ so we can write that as
R = 2vo cos (θ)vo sin (θ)/g or collecting terms: R = v2o(2cos(θ)sin(θ))/g. That term in parenthesis

is just sin (2θ) though, which gives the usual form: R = (v2o sin (2θ))/g .



y(x) : the X equation of motion simplified to x(t) = voxt which we can rearrange into t =

x(t)/vox. If we substitute that expression for t into the Y equation of motion, a bit of trig and
algebra later we can produce an equation that gives the Y coordinate directly in terms of X:
y = (tan θ)x− ( g

2v2o cos2 θ
)x2. This is sometimes (but rarely) useful, but it does finally show that y(x)

is in the form of a parabola.

Let’s look more closely at that RANGE equation.

Range : R = v2o sin (2θ)
g

For a given initial speed of the ball, the range
peaks when the sine reaches it’s maximum value,
which is 1, giving us a maximum range of

Rmax = v2o
g
. That max range will occur when

the argument of the sine function is 90o so here:
2θ = 90o or θ = 45o. .



Specialized Projectile Motion Equations
Object launched at origin with v⃗o = (vo, θ)

ax = 0 ay = −g
vox = vo cos θ voy = vo sin θ
x = (vo cos θ)t y = (vo sin θ)t− 1

2
gt2 y = (tan θ)x− ( g

2v2o cos2 θ
)x2

Apogee:
tA = (vo sin θ)/(g)
h = (v2o sin

2 θ)/(2g) above the launch point.

If yfinal = yinitial :
Total flight time: t = 2tA
Range R = (v2o sin 2θ)/(g)
Rmax = v2o/g at θ = 45o



Example : World War 2 Battleship
The US ‘Colorado-class’ battleships used dur-
ing World War II fired shells at 2600 ft/s at a
maximum angle above the horizon of 30o.

• What would the projectile range be?

• How long is the projectile in the air?

• What maximum height did the projectile
reach?

Converting units first: 2600 ft
1 sec

× 1 m
3.281 ft

= 792.44 m/s (a little over 1700 miles/hour).

The barrel couldn’t be aimed up more than 30o above the horizontal, so:

• Range R = v2o sin (2θ)
g

= (792.44)2 sin (60o)
9.8

= 55492 m

(so 55.5 km or about 34.5 miles)

• Flight time: t = 2tA = 2(vo sin θ)/(g) = (2)(792.44) sin (30o)/9.8 = 80.86 sec (almost a minute
and a half)

• Apogee height: h = (v2o sin
2 θ)/(2g) = (792.44)2·(sin (30o))2

(2)(9.8)
= 8010 m

(That’s slightly over 8 km or nearly 5 miles above the surface.)

Useful tidbit: assuming the Earth is a sphere and
you’re standing at sea level with your eye located
h meters above sea level, how far away is the hori-
zon (in kilometers)? d ≈

√
13 ∗ h. For an average

adult, that puts the horizon about 5 km (3 miles)
away. The deck of the battleship is about 12 m
above the sea surface yielding a horizon distance
of about 12.5 km (just short of 8 miles), so the
‘landing point’ of these shells was well beyond the
horizon.

Problems like this lead to some of the earliest me-
chanical ‘computers’ back in the 1940’s. This
gadget, full of wheels and levers, weighted about
3000 pounds!



Additional Example: Archery
Suppose we fire an arrow at a backyard archery target. Here, the arrow is fired at
exactly the same height at the bullseye on the target, and is fired horizontally. If the
target is 16 m away, we see that the arrow hits 78.4 cm below the bullseye.

(a) How fast was the arrow moving when initially fired?

(b) In order to hit the bullseye, we’ll need to aim the arrow up at some angle relative
to the horizontal. Assuming it’s fired at the same speed as before, determine
that angle.

(c) Approximately what is the maximum range of the arrow? How long would it
be in flight?

(a) If we put our coordinate origin at the launch point, we know the ending X and Y coordinates
and the launch angle (0o) so let’s exercise our new y(x) equation to find the unknown launch speed

vo: y = (tan θ)x− ( g
2v2o cos2 θ

)x2.

Here, θ = 0 so the tangent term goes away and the cosine term becomes just 1, leaving us with:

y = −gx2

2v2o
. At the target, we have x = 16 m and y = −0.784 m, which yields vo = 40 m/s. (That’s

a reasonable speed for an arrow fired by a normal person. A good archer can reach 70 m/s with a
normal bow, and about 90 m/s with a compound bow.)

Alternate path: use the y(t) equation of motion to find the time it takes for the arrow to reach the
target; then evaluate the x(t) equation at that time which will yields the launch speed.

(b) Now that we know the launch speed of the arrow, at what angle do we need to launch it so
that it exactly hits the bullseye? Since now the launch and landing points are at the exact same
elevation, we can use the specialized RANGE equation: Range R = (v2o sin 2θ)/(g)

Here R = 16 m and vo = 40 m/s so: 16 = (40)2 sin (2θ)
9.8

and after rearranging we find that:
sin (2θ) = 0.098.

Taking the inverse sine of both sides of this equation yields: 2θ = sin−1(0.098) = 5.624o from which

finally θ = 2.812o .

So where would you need to aim on the target to hit the bullseye? Initially the arrow
ended up 78.4 cm low, so it’s tempting to say you’d just aim that much above the bullseye, but
that’s not quite correct. If you draw a line from the firing point to the target at the angle we
found, the Y coordinate where the line hits the target would be found by tan θ = y/x or y =



x tan θ = (16 m) tan (2.812o) = +0.786 m or 78.6 cm above the bullseye. Notice that’s slightly
higher than the 78.4 cm that we missed the bullseye by initially, and this difference gets more and
more significant the larger the ‘miss’ distance was.

(c) Maximum Range: if we launch the arrow at a 45o angle, the range will be Rmax = v2o/g =
(40)2/9.8 = 163.3 m, so we could theoretically move the target that far away and still hit the
bullseye.

Maximum flight time: t = 2tA = 2(vo sin θ)/(g) = (2)(40) sin (45o)/9.8 = 5.77 s

(Technically, the equations for R and tA require the object to launch and land at the same elevation
and they don’t quite do that here. Try solving this using the full equations of motion for x(t) and
y(t) and assume the arrow is launched at yo = 2 m above the ground, and still at a 45o angle. You’ll
find the arrow lands at x = 165.2 m now, or about 2 meters farther. A fancier solution that allows
the angle to vary yields a maximum range of 165.25 m if the arrow is fired at about 44.65o.)



Additional Example: HW Problem 3.52 : Romeo
is throwing pebbles gently up to Juliet’s window and he
wants the pebbles to hit the window with only a horizontal
component of velocity. He is standing at the edge of a rose
garden 8.0 m below her window and 9.0 m from the base of
the wall (see figure). How fast are the pebbles going when
they hit her window?

Coordinates : we’ll put the origin where the rock was
thrown, with +X to the right, and +Y vertically upward.

Since the pebble is reaching it’s apogee point right at the window (the point where it’s travelling
only horizontally, so vy = 0 at that point). The figure here looks like the first half of our specialized
projectile motion equations, so it’s tempting to use those equations, where we know the apogee
height is h = 8 m and the range would be R = 18 m. I’ll do it that way first, but this approach
turns out to be tricky.

h = 8 = (v2o sin
2 θ)/(2g) or multiplying both sides by 2g we have: 156.8 = v2o sin

2 θ

R = 18 = (v2o sin (2θ))/(g) and multiplying both sides by g yields: 176.4 = v2o sin (2θ) .

Technically we now have two equations and two unknowns that we could use to find the initial launch
speed vo and launch angle θ, and then the X component of that velocity would be vox = vo cos θ
and that’s the velocity the pebble would still have when it hits the window.

How can we combine these equations though? They both contain v2o so let’s get rid of that term
first by just dividing the first equation by the second:

156.8
176.4

= v2o sin2 θ
v2o sin (2θ)

= sin2 θ
sin (2θ)

Now we have to use a trig identity that sin (2θ) = 2 sin θ cos θ which means the right hand side of
that equation is actually sin θ sin θ

2 sin θ cos θ
and we can cancel one of the sines leaving us with sin θ

2 cos θ
or just

0.5 tan θ.

Finally then: 0.8888 = 0.5 tan θ or tan θ = 1.7777 from which θ = 60.64o and using the height or
range equations each yields vo = 14.367 m/s, so vox = vo cos θ = 7.04 m/s as the final answer.

OK, let’s try a somewhat more straightforward solution, breaking the problem up into X
and Y components. In the Y direction, we do know vy = 0 when the pebble hits the window,
we know the Y acceleration, and we know the ∆y between the launch point and the window, so:
v2y = v2oy + 2ay∆y becomes: (0)2 = v2oy + (2)(−9.8)(8) from which voy = 12.52 m/s.

We can use that to find the TIME it takes the pebble to reach the window: vy = voy + ayt so here:
0 = 12.52− 9.8t from which t = 1.2776 sec.

Finally, in the X direction, x(t) = xo + voxt+
1
2
axt

2 becomes: 9 = 0 + (vox)(1.2776) + 0 from which
vox = 7.04 m/s (and the pebble maintains that X velocity throughout it’s flight, and when the
pebble hits the window at the apogee point, that’s the only velocity component still present).



Additional Example: Football Throw : A quarterback throws the ball to a

location where the receiver will be located some (brief) time later. For a particular
throw, suppose the ball needs to arrive at a location 30 m from where it was thrown,
and needs to arrive at that location 1.5 sec after being thrown.
At what speed and angle must the ball be thrown? (Assume the ball is thrown and
caught at the same elevation.)

It’s tempting to use the specialized equations for range, height, time, etc here. Looking at them
again:

Range R = (v2o sin 2θ)/(g) and flight time t = 2tA = (2vo sin θ)/(g) which means we’d have to use
the trig identity to expand sin (2θ) again and combine the equations. You should try that (it’s
not as bad this time), but let’s attack this with our previous approach, breaking the motion into
separate X and Y motions.

With an origin located at the point where the ball was thrown from, with +Y vertically upward
and +X pointing towards where the ball was caught, we have xo = 0, yo = 0, ax = 0 and ay = 0
we have:

X direction : x(t) = xo + voxt+
1
2
axt

2 or x(t) = voxt and plugging in what we know: 30 = (vox)(1.5)

or vox = 20 m/s .

Y direction : y(t) = yo+voyt+
1
2
ayt

2 and plugging in what we know: 0 = 0+(voy)(1.5)− (4.9)(1.5)2

or voy = 7.35 m/s .

Well - that was a much quicker solution. Now that we know the components of the initial velocity
vector, we can find the magnitude and angle:

v =
√
v2ox + v2oy =

√
(20)2 + (7.35)2 = 21.31 m/s (about 48 mph, which is not unusual for a football

speed).

tan θ = voy/vox = 7.35/20 from which θ = 20.2o.



Additional Example : Snake River Canyon Jump
: On 16 September 2016, stuntman Eddie Braun suc-
cessfully jumped a motorcycle (more like a rocket bike)
across the 1400-foot-wide chasm of the Snake River
Canyon (a feat initially but unsuccessfully attempted by
Evel Knievel on 8 September 1974).
The news photograph shows a launch angle of about 54o

(instead of the optimal 45o), so what must the initial
launch speed have been?

(FYI the rocket bike didn’t actually land directly, but deployed a parachute on the other side of the
chasm. For purposes of this problem though, assume it launched and landed at the same elevation.)

The description of the flight here exactly matches the situation our specialized projectile equations
were designed for. We know the range and angle and are looking for the launch speed.

Units: converting the distance first: (1400 ft)× 1 m
3.281 ft

= 426.7 m.

Range R = v2o sin (2θ)
g

so here:

426.7 = v2o sin 108o

9.8
which yields vo = 66.3 m/s (about 148 mph).

NOTE : I noticed the photograph is taken from a point of view that is at an angle. The actual
launch angle will be smaller than the apparent angle extracted from the figure. Assuming the bike

was launched at θ = 45o: 426.7 = v2o sin 90o

9.8
which yields vo = 64.67 m/s (about 145 mph).

Another article claimed the rocket bike achieved a maximum height of 2000 ft or about 610 m.
Let’s see what that implies about the launch speed:

Height : h = (v2o sin
2 θ)/(2g) so 610 = v2o(sin 54o)2

(2)(9.8)
from which vo ≈ 135 m/s (about 300 mph).

A third article claimed the rocket hit a maximum speed of 400 mph.

Why all these inconsistent results?

Braun’s attempt involved a powered rocket bike, where the rocket thrust continued to accelerate
the ‘bike’ even after launch, so really this flight doesn’t fit the assumptions of our projectile motion
equations. Those assume an initial launch speed vo and then afterwards it’s just gravity pulling the
object downward.



Additional Example : Clown Gun Half-time Stunt
We have been asked to evaluate the feasibility of doing a spectacular stunt during
half-time at the Egg Bowl game. Based on the ‘clown gun’ stunt sometimes seen at
carnivals or circuses, a person will be launched from a large cannon and fly through
the air across the entire length of the field, landing ‘safely’ in a large net.

Additional information:

• The launch and landing points are exactly 100 m apart, and are at the same elevation.

• The victim volunteer will accelerate from rest to launch speed over a length of 4 m within the
barrel of the cannon.

• A fit human can reasonably withstand an acceleration of 5 to 10 g’s for brief periods.

We will find that, as designed, this is not feasible.

• What length barrel is needed to make it (minimally) ‘safe’?

• If we can’t change the barrel length, what is the maximum safe distance for the stunt (i.e.
we’ll have to move the net closer in)?

Note what’s going on here. The object (the clown) starts at rest at the bottom of the cannon, and
leaves the top moving fast enough to fly through the air and land on the net. That means we really
have two connected problems here: A to B is a 1-D acceleration problem while the object is

in the cannon, while B to C is a free-fall problem ( a⃗ = g⃗ ) while they’re flying through the air.



From B to C in the figure , we have a classic projectile motion situation where the starting and
ending points are at the same elevation, so we can use the specialized equations of motion such as:

R = v2o sin (2θ)
g

.

For a given launch speed vo, the maximum range will occur when the launch angle θ = 45o. We
need to reach a range of R = 100 m here, so if we launch at any other angle, the sin (2θ) term will
be less than 1, which means we’ll have to ‘make up’ the difference by increasing vo. A higher launch
speed though means that the object will have to undergo a higher acceleration in the cannon, and
we want that value to be as low as possible. If a exceeds 10 g in the cannon, the person being
launched could be injured.

So: to put the least stress on the individual, we want to launch with the smallest speed possible,
which implies we want to get as much range as possible out of that launch speed. We’ll want to
aim the cannon so that the launch angle is 45o.

At this 45o angle then, we have: R = v2o sin (2×45)
g

= v2o sin (90)
g

= v2o
g
. Rearranging: vo =

√
Rg =√

(100 m)(9.8 m/s2) = 31.305 m/s.

From A to B in the figure , we have 1-D motion where the object starts at rest, then accelerates

to a launch speed of 31.305 m/s over a distance of 4 m, so we can use: v2 = v2o + 2a∆x to find the
acceleration required. NOTE that this is a new problem, and we’ve changed what our variables
mean. In the cannon, vo is their initial speed (zero), and v is their final speed of 31.305 m/s. (And
we’ve created a 1-D coordinate system, with the X axis being along the line they’re travelling in
the cannon.

Applying that equation then: (31.305)2 = (0)2 + (2)(a)(4) from which a = 122.5 m/s2.

g represents an acceleration of 9.8 m/s2 so that can be seen as a units conversion factor. Basically
1 g = 9.80 m/s2. Multiplying our acceleration by that factor:

a = (122.5 m/s2)× 1 g
9.8 m/s2

= 12.5 g.

Sadly, that exceeds the 10 g limit that we were allowed. What can we do?

Option 1 : retain the 100 m range (which requires a launch speed of 31.305 m/s but extend

the barrel. Setting a = 10 g = 98 m/s2,:
v2 = v2o + 2a∆x implies that
(31.305)2 = (0)2 + (2)(98)(∆x) or ∆x = 5 m.

If we lengthen the barrel from 4 to 5 meters, we can adjust the springs or hydraulics or whatever
mechanism is causing the acceleration to produce a slightly lower acceleration over a slightly longer
distance and still achieve the desired launch speed.

Option 2 : retain the existing cannon length, but reduce the range. If a = 10g = 98 m/s2 in

the barrel, the launch speed will be: v2 = v2o + 2a∆x = (0)2 + (2)(98)(4) from which v = 28 m/s.

That implies a max range of Rmax = v2o
g
= (28)2

9.8
= 80 m (which would still be pretty impressive).


