
PH2213 Fox : Lecture 07
Chapter 4 : Dynamics : Newton’s Laws of Motion

Force vs Acceleration

The first few chapters dealt with motion (1-D and beyond), focusing in particular on situations
where the acceleration is a constant.

Forces are what cause an object to accelerate. A vector force F⃗ applied to an object of mass m
will cause that object to accelerate in the same direction of F⃗ and with a magnitude of a = |F⃗ |/m,

so we can write that as a⃗ = F⃗ /m.

Force Units : MKS Metric System

• Rearranging a⃗ = F⃗ /m into the more common form: F⃗ = ma⃗, let’s replace each term with its
units to determine what units forces must have:

• [force units] = [kg][m/s2] = kg m/s2 = Newtons (N)

Force Units : English System

• One common English unit of force is the pound :

• 1 lb = 4.44822 N or 1 N = 0.2248 lb

Force Units : CGS Metric System

• In chemistry and biology, the CGS version of the metric system is common where masses are
measured in grams and lengths in centimeters.

• In this system, one dyne of force will cause a 1 gram mass to accelerate at 1 cm/s2 .

• 1 dyne = 1× 10−5 N



Multiple Forces

• F⃗1 applied to an object of mass m produces an acceleration of a⃗1 = F⃗1/m

• F⃗2 applied to an object of mass m produces an acceleration of a⃗2 = F⃗2/m

• The two forces applied at the same time produces both accelerations simultaneously:
a⃗ = a⃗1 + a⃗2

• a⃗ = a⃗1 + a⃗2 = F⃗1/m+ F⃗2/m = (F⃗1 + F⃗2)/m or rearranging: F⃗1 + F⃗2 = ma⃗.

• When multiple forces are present, the object’s acceleration is the same as if a single force

equal to the sum of the individual forces (the ‘net Force’) had been applied: F⃗net =
∑

F⃗i

• This leads to the most common form:
∑

F⃗i = ma⃗

That final point is important to understanding and analyzing situations where forces are involved.
Many forces may be acting on some object, but we can combine them (as vectors) into a single
force to determine how the object will react.

(NOTE: technically that’s true only for the ‘point-mass’ model of objects. Later on, we’ll see how
applying forces to different locations on an object can induce rotations as well.)

The reverse is also true. Even if only a single force is present, it can be convenient to replace it with
two forces (aligned with the coordinate system chosen) which add up to the original force vector.

We’ll see how this all plays out as we work through several examples.



Newton’s Laws

• First Law : if there is no net force on an object, it will continue to move with a constant
velocity (which could be zero but doesn’t have to be).∑

F⃗i = 0 implies a⃗ = 0 and equivalently: a⃗ = 0 implies
∑

F⃗i = 0

NOTE: this, plus a corresponding equation for rotational forces (torques) is the basis for the
statics course many (most?) of you will end up taking.

• Second Law : if there is a net force on an object, then it will cause that object to accelerate

according to
∑

F⃗i = ma⃗
Note the picky wording there: The forces acting on an object are what produce the accel-
eration of that object. Other forces may be present, and may indirectly work their way onto
the object, but ultimately it’s the forces acting directly on the object that are all it ‘knows’
about.

• Third Law : all forces are interactions between objects. If A○ exerts a force on B○, then
B○ exerts an equal and opposite force on A○. Same magnitude, exactly opposite direction.
(Think magnets, charged objects, masses attracting each other via gravity, etc.)



There are many different types of forces, but in this class we’ll focus mostly on gravity, externally
applied forces, normal forces, elastic (spring) forces, and friction. Electric and magnetic forces are
left to PH2223, and other forces like what occurs inside the nucleus of an atom get briefly touched
upon at the end of PH2233.



Gravity: F⃗g

Objects with mass will attract one another. We’ll cover this in more detail in chapter 6, but for now
if we restrict ourselves to situations on or very near the surface of a large body (planet or moon) a

good approximation for the force of gravity is F⃗g = mg⃗.

Example: suppose we have an object of massm that is released from rest above the floor. Determine
it’s acceleration.

Once the object is released, the only force acting on it is gravity so Newton’s 2nd law states∑
F⃗i = ma⃗ and in this case our ‘sum’ only has one term, so: F⃗g = ma⃗ but F⃗g = mg⃗ so replacing

the left side we have: mg⃗ = ma⃗ or simply a⃗ = g⃗. If an object only has gravity acting on it, it’s
acceleration will be g⃗, which is a constant, so all our equations-of-motion machinery from chapters
2 and 3 become available to analyze it’s motion.

Normal Force : FN

Suppose our object is sitting on a table with a horizontal, flat surface. Gravity is still acting on the
object, but it doesn’t appear to be accelerating, so there must be another force present. That force
is called the normal force. Basically, the atoms that make up the object can’t pass through the
atoms that make up the table.

The name normal force refers to the fact that
it’s direction is normal (i.e. perpendicular) to the
contact surface between the two objects. It just
prevents things from moving through each other.

Suppose the object is sitting on a sloping surface.
It can slide along the surface fine, it just can’t
move through it. The normal force is perpendic-
ular to the surface:



Example: Object on scale, in elevator AT REST
Suppose a 60 kg person is standing on a scale, in an elevator. If the
elevator is at rest, what will the scale read?
Newton’s Laws apply separately to each ‘object’, so if we apply them
to the person, they have a mass so gravity is exerting a force of F⃗ =
mg⃗ downward. They’re not passing through the scale, so it must be
exerting a force upward on them of F⃗N .
Applying Newton’s 2nd law to the person:

∑
F⃗i = ma⃗ or:

F⃗g + F⃗N = 0. Let the Y direction be pointing vertically upward. Then
picking off the Y (that is, the ĵ) components in that equation, we have
−mg+FN = 0 or FN = mg = (60 kg)(9.8 m/s2) = 588 N × 1 lb

4.44842 N
=

132.2 lb.

Short Detour : Focusing on the scale now, we see that (from Newton’s third law) that if the scale
is exerting a force upward of mg on the person, the person is also exerting a force downward on the
scale of mg. Basically that’s what the scale is designed to provide: how much force is something
applying to it. In the old days, there would be a spring inside the scale, and the weight of the
object placed on it would compress the spring, causing (via an arrangement of mechanical levers) a
pointer on a dial to respond. More recently, this force-on-the-scale causes a crystal inside the scale
to be compressed which directly produces a small current or voltage that a circuit converts into a
number displayed on a screen.

Key Point : Note that our analysis would be identical if the elevator were moving up or down, as
long as it’s moving at a constant velocity. Remember that a⃗ on the RHS of Newton’s Laws is the
acceleration, not the velocity. A constant velocity (whether zero or not), means that a⃗ = dv⃗/dt is
zero.

Example: Object on scale, in upward accelerating elevator
Suppose the same person is in an elevator that is accelerating upward
at 2 m/s2. What will the scale read? (See Example 4-8 in the textbook
also, where the elevator is accelerating downward.)
Focusing on the person again, they’re accelerating upward along with
the elevator, so ΣF⃗ = ma⃗ and the RHS is no longer zero.
Picking off the vertical (Y) component of that equation: −mg + FN =
ma or FN = mg + ma = (60 kg)(9.8 m/s2) + (60 kg)(2 m/s2) =
588+120 = 708 N (or 159.2 lb). The scale must be exerting that much
force upward on the person, so the person is exerting the same amount
of force downward on the scale, producing a reading that is higher than
before.

This scenario might represent:
* elevator starting at rest, then rising
* elevator moving downward but then coming to a stop

In both cases the acceleration vector is upward. Don’t confuse acceleration with the direction
of the velocity. Remember that acceleration is the derivative of velocity: how the velocity is
changing.



Steps Involved in Applying Newton’s Laws

Scenario Forces Present Free-body Appropriate
Diagram Coordinates

• Problem statement : visualize (sketch) what’s going on

• Select the object to which we’ll apply Newton’s Laws

• Note all forces acting on that object

– if the object has mass, then we have gravity: F⃗g

– if the object is touching another object, we have a normal force F⃗N

– any other forces?

• Optional: free-body diagram version

– replace object with point mass

– add force vectors

• Select an appropriate coordinate system

– forces here are entirely in the vertical direction, so that should be one of the coordinate
axes

• Apply Newton’s Laws:
∑

F⃗i = ma⃗∑
Fx = max and separately

∑
Fy = may and so on



Example: M = 100 kg crate sitting on
floor; being pushed with |F | = 200 N
directed 30o below the horizontal. De-
termine the acceleration of the crate
across the floor.

Object : the crate
Forces Present :

• It has a mass, so F⃗g vertically down-
ward

• The 200 N pushing force at the given
angle

• A normal force F⃗N keeping the crate
from moving through the floor

Free-body version

Choose a coordinate system : the crate will slide
across the floor to the right, so we’ll elect to use
+X to the right, and +Y vertically upward.
Resolve vectors into components : any force vec-
tors that aren’t already entirely in X or Y will
need to be converted into their X and Y compo-
nents. Here, the pushing force is to the right and
down, so it’s replaced with a Y component push-
ing down, and an X component pushing to the
right.

Apply Newton’s Laws

X direction :
∑

Fx = max so pick off the X components of all the force vectors acting on the

crate. With our coordinate system choice, F⃗N and F⃗g are entirely in the Y direction, so their X
components are zero, leaving only the X component of the pushing force:∑

Fx = max so here: 200 cos 30 = (100)(ax) or ax = +1.732 m/s2.

Y direction :
∑

Fy = may so pick off the Y components of all the force vectors acting on the crate.

F⃗g has a magnitude of Fg = mg = (100 kg)(9.8 m/s2) = 980 N and is directed straight down, so it
has a Y component of −980 N . The pushing force has a Y component of 200 sin 30 = 100 N and
is also in the negative Y direction, so Fpush,y = −100 N . Collecting them: −980− 100 + FN = 0 or
FN = 1080 N .



Example: Object of unknown mass M
is placed (at rest) on a 30o incline. It
slides down the incline until it reaches
the floor, travelling a distance along the
incline of 2 m. How fast is the object
moving when it reaches the bottom of
the ramp?

Forces acting on the object :

• It has a mass, so F⃗g vertically downward

• A normal force F⃗N keeping the object from moving
through the ramp.

Choose a coordinate system : the object will slide down
the ramp so let’s use a rotated coordinate system
with +X parallel to the ramp, and +Y perpendicular to
the ramp and aimed up away from the ramp.
Resolve force vectors into components : FN is entirely in
the Y direction, so nothing to do there, but we’ll need
to convert F⃗g into components in our rotated coordinate
system. Propagating the angle of the incline around a
bit we end up with an angle inside the Fg ‘triangle’. F⃗g

has a magnitude of Fg = mg straight down, so we’ll have
|Fgx| = mg sin θ in the rotated +X direction, and |Fgy| =
mg cos θ in the rotated negative Y direction, so Fgy =
−mg cos θ.

Apply Newton’s Laws

X direction :
∑

Fx = max so pick off the X components of all the force vectors acting on the
crate. With our coordinate system choice, we only have Fgx in the X direction, so mg sin θ = max
or ax = g sin θ = (9.8 m/s2) sin (30o) = 4.9 m/s2. The object starts at rest so we can find it’s
speed at the bottom of the ramp: v2x = v2ox + 2ax∆x or v2x = (0)2 + (2)(4.9 m/s2)(2 m) from which
|vx| = 4.427 m/s (and it’s sliding along the ramp, so vy = 0).

Y direction :
∑

Fy = may = 0 since the object isn’t changing it’s Y coordinate at all as it
slides down the ramp. Picking off Y components of all the force vectors acting on the crate:
FN −mg cos θ = may = 0 so FN = mg cos θ. (We don’t know the mass here, so can’t determine a
numerical value for FN but we do see that it’ll be less than the full weight (mg) of the object.



Example: An object of M = 100 kg is sit-
ting on a 40o ramp. If we want to hold
the object in place by pushing on it hori-
zontally as shown in the figure, how much
force do we need to apply?

Forces acting on the object :

• It has a mass, so F⃗g vertically downward

• A normal force F⃗N keeping the object from moving
through the ramp.

• The horizontal pushing force F⃗push

Choose a coordinate system : without the pushing force, the object would slide down the ramp so
let’s use a rotated coordinate system with +X parallel to the ramp, and +Y perpendicular to the
ramp and aimed up away from the ramp.

Resolve vectors into components : FN is entirely in the
Y direction, so nothing to do there, but we’ll need to
convert the others. Propagating the angle of the incline
around a bit we see that |Fgx| = mg sin θ aimed in the
+X direction, |Fgy| = mg cos θ aimed in the -Y direc-
tion, |Fpush,x| = Fpush cos θ aimed in the -X direction,
and |Fpush,y| = Fpush sin θ aimed in the -Y direction.
See the Resolving Vectors information on Canvas, which
is a link to: https://newton.ph.msstate.edu/~fox/

ph2213/vectors/index.html

Apply Newton’s Laws

X direction :
∑

Fx = max = 0 (zero since we want the object to just sit there), so pick off the X
components of all the force vectors acting on the crate: Fgx+Fpush,x = 0 or mg sin θ−Fpush cos θ =
0 from which Fpush = mg sin (θ)/ cos (θ) = mg tan θ. Substituting in the information provided:
Fpush = (100 kg)(9.8 m/s2) tan (40o) = 822.3 N .

(We could do the Y direction to determine the amount of normal force present, but the X direction
gave us what we were looking for so we’ll just stop there.)

https://newton.ph.msstate.edu/~fox/ph2213/vectors/index.html
https://newton.ph.msstate.edu/~fox/ph2213/vectors/index.html

