
PH2213 Fox : Lecture 09
Chapter 4 : Dynamics : Newton’s Laws of Motion

Example : Connected Sleds : Suppose we have two
sleds being pulled across flat, horizontal (frictionless)
ground. The sleds are connected together with a short
horizontal piece of rope, and the front sled is being pulled
with a rope that has some amount of pulling force ap-
plied to it at the 20o angle shown in the figure. The sleds
are observed to be accelerating to the right at 0.5 m/s2.
Determine the pulling force and the tension in the rope
connecting the two sleds.

We have to apply Newton’s Laws to each object and point of interest separately, so let’s start at
the front and work backwards. (We’ll find this was the wrong direction to work the problem.)

Focusing on the point where the person is pulling on the front rope,
we have their pulling force Fpull in line with the front rope, which is
pulling back with a tension of T1.
That point actually is accelerating here.

∑
F⃗ = ma⃗ and a⃗ is nonzero

here. The mass of that point is very small though, and in fact for the
remainder of this course we’re going to assume that all our connecting
elements (ropes, wires, strings, cables, and so on) are all massless.

That means the ma⃗ right-hand side of Newton’s Laws will be zero, not because the point isn’t
accelerating but because we’re ignoring the mass of the connecting element. This assumption is
fairly common, even for real materials, and really only becomes a problem is the connecting elements
have significant mass.

So, assuming our ropes are massless, the pulling force is exactly equal to the tension in the front
cable (just in the opposite direction).

Moving on to the sled up front, we have T1 (at a 20 degree angle, so
we’ll need it’s components), T2 pulling back to the left (our negative
X direction), and also (not shown) gravity downward and the normal
force upward. This object is accelerating to the right at 0.5 m/s2 so
applying Newton’s Laws in the X direction:∑

Fx = max yields −T2 + T1 cos (20
o) = (40 kg)(0.5 m/s2) or −T2 +

0.93969T1 = 20. Two unknowns, so can’t go any further (yet).

Looking at the sled at the back now, we have gravity downward, a nor-
mal force upward, and the tension T2 in the connecting rope pulling to
the right.
Here then:

∑
Fx = max becomes T2 = (100 kg)(0.5 m/s2) = 50 N .

(Well, clearly we should have started here at the back since applying
Newton’s Laws immediately provided one of our unknowns.)

Now that we know T2, we can work backwards. We earlier found that −T2 + 0.93969T1 = 20 so
substituting in the now known value of T2 = 50 N yields T1 = 74.5 N .



Sleds : continued

(a) What force would be needed to cause the sleds to accelerate to the right at 10 m/s2? What
will FN be in this case? Is this situation possible?

This time we’ll start with the sled at the back.
∑

Fx = max becomes T2 = (100 kg)(10.0 m/s2) =
1000 N .

Moving up to the front sled, we have:∑
Fx = max which yielded −T2 + T1 cos (20

o) = ma = (40 kg)(10.0 m/s2) so now: −1000 +
T1 cos (20

o) = 400 which yields T1 = 1490 N .

Fine, but before we go, let’s look at the normal force on the front sled.
∑

Fy = 0 on that object,
so collecting the Y components of the forces acting on the sled, we have FN upward, the vertical
component of T1 upward, and gravity downward:

∑
Fy = FN + T1 sin (20

o) − mg = 0 or FN +
(1490 N) sin (20o)− (40)(9.8) = 0 but here we end up with FN = −118 N .

What does a negative normal force mean? We drew FN as acting upward on the front sled,
preventing it from moving through the ground. A negative FN means it’s actually acting downward,
pulling the sled towards the ground. That’s not how the normal force works though.

It looks like if we want to cause these sleds to accelerate at 10 m/s2 to the right, there isn’t enough
normal force to keep the front sled in contact with the ground and the picture we drew isn’t possible.

(b) What is the maximum force and acceleration allowed here if the front sled is to remain in
contact with the ground?)

With a = 0.5 m/s2 everything worked out; moving up to a = 10.0 m/s2 we failed to find a valid
solution where the front sled remained on the ground.

What’s the maximum acceleration we can allow here so that FN doesn’t go negative? Let’s look
for a solution where FN = 0.

Starting with the front sled’s Y equation:
∑

Fy = FN + T1 sin (20
o) − mg = 0 and we’re let-

ting the normal force get down to 0 here, so 0 + T1 sin (20
o) − mg = 0 or T1 = mg/ sin (20o) =

(40)(9.8)/ sin (20o) = 1146 N .

Looking at the front sled’s X equation:
∑

Fx = max so−T2+T1 cos 20 = ma so: −T2 + 1077 = 40a .
Well that’s as far as we can go for now, so let’s look at the sled at the back:∑

Fx = max so T2 = 100a .

Aha - now we have two equations and two unknowns. We’re trying to find the acceleration for this
edge case, so let’s eliminate T2 in the first equation using the second equation:

−(100a) + 1077 = 40a or 1077 = 140a from which a = 7.69 m/s2.

Any higher acceleration and the upward component of T1 will overcome the force of gravity on the
front sled and lift it off the ground (at which point our figure would no longer represent the situation
to be analyzed).



Example: Simple Pulley
A 40 kg box is hanging from a cable that runs over a
pulley (which is attached to the ceiling).
(a) How much force is the person exerting downward on
the right to be able to hold the box in place?
(b) How much tension is in the cable connecting the pul-
ley to the ceiling?

MIDDLE FIGURE: First, we have to consider how many tension
variables we have here. If we focus on the cable connecting the
box to the person holding it, let’s consider a tiny element of the
cable as it wraps around the pulley. If the tension is changing
in the cable, we’ll have (say) T1 pulling counterclockwise and T2

pulling clockwise, so using a coordinate system tangent to the
pulley at that point,

∑
F = ma implies that −T1+T2 = (∆m)a.

In this problem, there’s no acceleration, so the right side of that
equation is zero, which means that T1 = T2 and we can make
that argument millimeter by millimeter along the cable to verify
that the tension in that cable is the same everywhere: all the
way from the box to the person holding on to the other end of
the cable. That wouldn’t be true if the system is accelerating
though, unless the cable itself has zero mass. In the real world,
these connecting wires and cables do have mass, so the tension
actually will be different on the two ends of the cable, but for the
rest of this course we’ll assume that all our ‘connecting elements’
(ropes, string, cables, etc) are all mass-less. (Actually even in
real systems that assumption is often used even when it’s not
technically true...)
Now we can label the system properly (BOTTOM FIGURE).
Let’s have T1 be the tension in the cable running from the box up
around the pulley and then down to where the person is holding
onto it. T2 will be the tension in the cable connecting the pulley
to the ceiling.

Applying Newton’s Laws in the Y direction to the crate:
∑

Fy = may = 0 so T1 − mg = 0 or

T1 = mg = 392 N .

Applying Newton’s Laws in the Y direction to the point where the pulling force is being applied:
T1 − Fpull = may = 0 so T1 = Fpull which tells that Fpull = T1 = mg = 392 N as well.

Applying Newton’s Laws in the Y direction to the pulley itself,
we have T2 upward and two copies of T1 pulling downward: one
on each side of the pulley, so

∑
Fy = may = 0 or T2−T1−T1 = 0

so T2 = 2T1 = (2)(mg) = 784 N .



Example: Double Pulley
In the previous example, we didn’t really gain any mech-
nical advantage: we had to pull on the box with a force
equal to it’s full weight. In addition, the pulley ended up
exerting a force on the ceiling equal to twice the weight
of the box.
Suppose we add a second pulley as shown in this figure.
How much force do we need to exert now, and determine
the tensions in all the cables present. (The mass of the
box remains 40 kg.)

(Note that the pulley on the left is just resting on the cable, being pulled down by the box, but this
pulley isn’t connected to anything else like a wall or ceiling.)

Based on the arguments given in the first problem, the cable that starts at point A, wraps around
the ‘floating’ pulley, then back up around the pulley on the right, and then finally down to where
the person is pulling on it represents a single tension throughout that cable, which I’m calling T2.

There’s also a tension T1 in the cable connecting the box to the floating pulley, and a tension T3 in
the cable connecting the fixed pulley to the ceiling.

Let +Y be vertically upward here.

• Applying Newton’s laws to the box, we have T1 upward and the force of gravity downward,
so

∑
Fy = may = 0 becomes T1 −mg = 0 or T1 = mg . (Full weight of the box.)

• Applying Newton’s laws to the floating pulley itself, we have T2 pulling vertically upward
on both sides, and T1 pulling down, so

∑
Fy = may = 0 becomes T2 + T2 − T1 = 0 or

T2 =
1
2
T1 = 0.5mg . (HALF the weight of the box.)

• Applying Newton’s laws to the point where the person is holding onto the cable:
∑

Fy =

may = 0 becomes T2 − Fpull = 0 or Fpull = T2 = 0.5mg . (HALF the weight of the box.)

• Finally, applying Newton’s laws to the pulley attached to the ceiling:
∑

Fy = may = 0
becomes T3 − T2 − T2 = 0 or T3 = 2T2 = 2(0.5mg) = mg.

In this configuration, the person is only having to exert a force equal to half the weight of the box
to hold it in place.

Considering the forces on the ceiling, we see that the left pulley is pulling down on the ceiling with
a force of T1 = 0.5mg and the right pulley is pulling down on the ceiling with a force of T3 = mg,
so in total the ceiling has a force of 1.5mg being exerted on it. (So less than in the first example,
and we’ve gained a considerable mechanical advantage here when it comes to how much force the
person has to exert.)



Example: Atwood Machine
Let’s expand on the first pulley problem and have a sec-
ond box hanging on the right, instead of a person pulling
on the cable there. And let’s make this box heavier so
that the system is no longer in equilibrium and will ac-
celerate.
Here, we have our original 40 kg box on the left, and now
we also have a 60 kg box on the right.
Determine the tensions present and the acceleration of
the boxes.

Based on the previous problems, we have two tension variables here: one in the cable connecting
the pulley to the ceiling, and one in the cable that runs from the 40 kg box, loops around the pulley
and then connects to the 60 kg box.

We need to apply Newton’s Laws separately to each object (to each
box, for example). They’re connected with a cable that isn’t changing
it’s length, so whatever the left box is doing upward, the right box
is doing downward. They’ll have the same relative displacements, the
same speeds, and same accelerations.
If we use a coordinate system with +Y upward throughout this prob-
lem, that means that the acceleration vector for the left box is a⃗ = aĵ
(some magnitude a in the +Y direction, which is represented by ĵ),
BUT the acceleration vector for the box on the right will be a in the
negative Y direction: a⃗ = −aĵ.
(This detail is often missed, so we’ll attack this problem with
a smarter choice of coordinate systems once we’re done here.)

Applying Newton’s Laws to the box on the left:
∑

Fy = may becomes: T1 − Fg = ma so T1 −
(40)(9.8) = 40a or finally T1 − 392 = 40a .

The box on the right has an acceleration of the same magnitude, but it’s accelerating in the −Y
(negative Y) direction, so we’d have to write it’s vector acceleration as a⃗ = −aĵ. That means when
we pull out all the ĵ components of Newton’s Laws, we end up with −a for the ay component of
acceleration now.

Applying Newton’s Laws to the box on the right:
∑

Fy = may becomes: T2 − Fg = ma so T2 −
(60)(9.8) = 60(−a) or finally T1 − 588 = −60a .

Rearranging each equation to solve for T1:

• left box: T1 = 392 + 40a

• right box: T1 = 588− 60a

Setting the two right-hand sides equal to one another: 392+40a = 588−60a which we can rearrange

into 40a+ 60a = 588− 392 or 100a = 196 from which a = 1.96 m/s2 .



Then using the above equations we can determine the tension present:

• left box: T1 = 392 + 40a = 392 + 40(1.96) = 470.4 N

• right box: T1 = 588− 60a = 588− 60(1.96) = 470.4 N

NOTE that this tension is NOT equal to the weight of either of the two boxes. This is necessary
since each box has to be accelerating now, so there needs to be an imbalance of forces to allow that
to happen. Box 1 needs to be being pulled upward with a force larger than it’s own weight in order
to accelerate upward. Box 2 needs to be being pulled upward with a force less than it’s own weight
in order to accelerate downward.

A safer approach : Getting the sign of the acceleration right is tricky in connected-object
problems, so this is often handled by setting up separate coordinate systems for each object,
where in each case we choose the positive coordinate to be in the direction we think the object will
be accelerating. Here, the left object will be accelerating upward so we’ll leave +Y being upward
for that object and we already did that, leading to T1 − 392 = 40a.

We think the heavier box will accelerate downward though, so
we’ll let +Y be vertically downward for that object. Applying
Newton’s laws to that box now leads to: −T1+mg = ma since T1

is pulling upward (our negative direction) and gravity is pulling
downward (our positive direction), leading to an acceleration
downward (our positive direction).
For the 60 kg box in this new coordinate system then, we have
−T1 + 588 = 60a.

We now have two equations in two unknowns:

• T1 − 392 = 40a from analyzing the left box

• −T1 + 588 = 60a from analyzing the right box

Solving these is now trivial since we can just add the two equations together. That immediately
eliminates the T1 variable, leaving us with: −392+588 = 100a and the same solution we had before:
a = 1.96 m/s2.

Good rule of thumb: when dealing with connected objects, we have
to apply Newton’s Laws separately to each object anyway, so it’s a
good idea to choose separate coordinate systems for each object, letting
the positive direction be the direction we think the objects will be
accelerating.



Example : Jurassic Park (version 1)
In one of the early Jurassic Park movies, a di-
nosaur has pushed half of a connected trailer over
the edge of a cliff. Suppose the two objects are
initially at rest and we have no friction yet (we’ll
look at a more ‘realistic’ version of this problem
in the next chapter that does include friction).

Determine the acceleration of the two objects.

Looking at the 2000 kg object, we’ll have Fg acting downward on it, and some tension T1 acting
upward.

Following the cable back up to the 4000 kg object, we see that the same T1 will be pulling that
object to the right, and there aren’t any other forces in that direction, so it will accelerate to the
right.

The objects are connected, so if the 4000 is accelerating to the right at some acceleration ‘a’, the
2000 kg object will be accelerating downward with that same acceleration value.

4000 kg object : Using a coordinate system with +X to the right,
∑

Fx = max becomes

T1 = 4000a .

2000 kg object : Using a coordinate system with +X pointing vertically downward,
∑

Fx = max

becomes −T1 +mg = ma with M = 2000 and g = 9.8 so: −T1 + 19600 = 2000a

We have two equations and two unknowns to solve for. If we just ADD the two equations together,
the T1 terms will cancel since they’re of opposite signs, leaving us with: 19600 = 2000a+ 4000a or

finally a = 3.267 m/s2 .

Now that we have the acceleration, we can go back and find the tension. Using the 4000 kg object’s
equation: T1 = 4000a = 13067 N . Using the 2000 kg object’s equation: −T1 + 19600 = 2000a or
T1 = 19600− 2000a = 13067 N .

NOTE: if the 2000 kg were just hanging there not accelerating, the tension in the rope would just
be it’s weight of mg = (2000)(9.8) = 19600 N which is NOT the value we found to be present
when the object was accelerating. That’s an important thing to take away from examples like this.
When objects are accelerating, the tension will be DIFFERENT from what it is when the object
isn’t accelerating.



Example : Connected Objects on Ramps
Suppose we place our 40 kg and 60 kg boxes on a double-
ramp as shown in the figure.
I borrowed this figure from a homework problem but here
we have mA = 40 kg on the left (with the left side of the
ramp at a θA = 60o angle), and mB = 60 kg on the right,
where the ramp has an angle of θB = 30o.
Determine the acceleration of the boxes.

Encountering a problem like this, I have no idea which way the boxes will end up moving (or even
if they’ll move at all), so we’ll just have to guess a direction. Let’s assume that the heavier box will
accelerate down it’s ramp, causing the lighter box to accelerate up it’s ramp. We’ll apply Newton’s
Laws to each object, using separate coordinate systems for each.

In the end, if we guessed wrong, we’ll end up with a negative acceleration, since an acceleration of
(say) −2 m/s2 in the positive X direction just means we really have an acceleration of 2 m/s2 in
the negative X direction, since −2̂i = 2(−î).

Applying Newton’s Laws to the 40 kg object
Using the rotated coordinate system shown, in the X
direction we have FT pulling up the slope, and the X
component of Fg = mg = (40)(9.8) = 392 N pulling
down the slope so

∑
Fx = max becomes −Fg sin (60

o) +
FT = 40a or −392 ∗ (0.86603...) + FT = 40a or finally

−339.48 + FT = 40a

Applying Newton’s Laws to the 60 kg object
Using the rotated coordinate system shown, in the X
direction we have FT pulling up the slope (the nega-
tive X direction now), and the X component of Fg =
mg = (60)(9.8) = 588 N pulling down the slope
(our positive direction now) so

∑
Fx = max becomes

Fg sin (30
o)− FT = 60a or −588 ∗ (0.500) + FT = 60a or

finally 294− FT = 60a

Adding the two boxed equations together eliminates the FT variable, leaving us with: −339.48 +
294 = 100a or a = −0.458 m/s2. As argued at the start, that just means that really the boxes
are moving the other way: the lighter box is sliding down it’s ramp, pulling the heavier box up it’s
ramp. Even though the left box was lighter, the steeper angle of it’s ramp meant that we ended up
with a higher along-slope force of gravity in that direction.


