PH2213 : Examples from Chapter 4 : Newton’s Laws of Motion

’ Key Concepts ‘

Newton’s First and Second Laws (basically > F=ma ) allow us to relate the forces acting on an
object (left-hand side) to the motion of that object, through its acceleration (right-hand side).

Third Law: all forces are interaction forces, with ﬁab = —ﬁba. (Equal magnitude, opposite
direction.)

Statics : if an object is not moving, or is moving at a constant speed, then @ = 0 which means that
all the forces must cancel out, as vectors. That means that (separately) > F, = 0 and > F, =0
(and Y F, = 0). This, coupled with the geometry of the situation (the various lengths, angles, etc)
allows us to determine information about the forces (such as tension in cables).

Dynamics : if an object is accelerating, then the forces are not balanced (and vice versa). If we
have an acceleration, then all our machinery from chapters 2 and 3 on equations of motion can be
brought in to help analyze the situation.

| Common Errors |

e The normal force ( F'y or sometimes seen as just the symbol 77) is what keeps an object from
moving through another object, and is always perpendicular to that surface.

e The normal force is not necessarily just mg. When you include all the various vector forces
acting on an object, n is what is left over to prevent the object from moving through the
surface it is on.

e Since Newton’s laws are vector equations, many (most?) of the problems we encounter in-
volve resolving these vectors into components, which relies on being able to propagate angles
around. Detailed step-by-step examples are included on the course website under the Re-
solving Vectors link.

e trig : resolving vectors into components

e Remember: Zﬁ = md means that the (vector) forces acting on AN object produce the
acceleration of THAT object. Be careful to designate the object under consideration and
then look only at forces acting on THAT object.



1. Mythbusters : Bullet Stopping in Water

Suppose we fire a 20 gm bullet into the water with an initial speed of 300 m/s at some angle.
We find that it comes to a stop very rapidly, after travelling just 1 m through the water. Find
the force the water is exerting on the bullet during this interval. How long did it take to bring
the bullet to a stop? Initially, assume the bullet is travelling in a straight line and use 1-D
equations of motion, then show why that assumption is ok to use.

Let the X coordinate be in the direction of the bullet’s motion. Then we have an object with an
initial velocity of v, = 300 m/s, a final velocity of v = 0, and this occurs over a displacement of
Az = 1.0 m so we can find the acceleration from: v? = v+ 2aAx or (0)? = (300)? + (2)(a)(1)
or a = —45,000 m/s*. In terms of g’s, this would be a = —(45,000/9.8)g or a = —4592g.

How long did it take to come to a stop? v = v, + at so 0 = 300 + (—45,000)(¢) and
t = 300/45000 = 135 s (or t = 6.67 x 10~* s which would also be written as 6.67 ms).

During this time, the water is exerting a force on the bullet bringing it to a stop, but gravity
is also exerting a force downward. From above, though, we see that the deceleration due to
the water has a magnitude of 4592¢ which will completely overwhelm the acceleration due to

gravity. At least to 4 significant figures, we can completely ignore gravity here...

How much force did the water exert on the bullet? (The units of force, Newtons, are kg m /s
so we need to make sure everything is in standard metric units first. In this case, the mass
was given in grams instead of kilograms, so we need to convert it first.) F = ma so F =
(0.02 kg)(—45,000 m/s*) = —900 N (i.e. 900 N in the direction opposite the bullet, causing
it to slow down).

This is a pretty small amount of force, but the mass is to tiny that it can produce a huge
acceleration.

Compare this to the acceleration of the Bugatti Veyron car, which has a mass of about
m = 1900 kg and a braking acceleration of about 12.75 m/s*. That requires a force of
F =ma = (1900 kg)(12.75 m/s?*) = 24,225 N. The force here is a few orders of magnitude
larger than what we found for the bullet stopping in the water but the mass of the car is many
orders of magnitudes larger, resulting in a much lower acceleration.



2. Sliding Box (1) : Let’s apply Newton’s Laws to a simple
scenario of a box being pushed from the side. Suppose
we have a 10 kg box sitting on the floor (no friction here n A
yet) and we push horizontally with 50 N. First, we need _ !
to consider all the forces acting on the box. We have the ScN ;
50 N of pushing force, plus the force of gravity pulling S .rfj
the box down towards the center of the earth F; = mg, |
and we have some normal force between the box and the Y

floor that’s preventing the box from passing through the
floor.

" F = md so let’s break that into components. We'll use a coordinate system with +X to
the right, and +Y upward.

> F, = ma, : here, the weight and normal force are vertical, so they have no X components.
The only X component of force I see here is the 50 N we’re applying, so > F, = ma, becomes:
50 = (10)(a,) or a, = +5 m/s?, so the box will accelerate to the right at that rate.

> F, = ma, : we know the box doesn’t pass through the floor or jump upwards, so it has no
acceleration in the Y direction which means a, = 0, which implies that > F, = 0. In the Y
direction, we have n upward and mg downward, so n —mg = 0 or n = mg. Here, the normal
force is apparently equal to the weight of the box.

Once we have the components of the acceleration, we can bring in all the machinery on motion
from chapters 2 and 3:

e If the box starts from rest, how fast is it moving 4 seconds later? v, = v, + a,t so
v, = (0.0 m/s) + (5.0 m/s*)(4 s) = 20 m/s.

e If the box starts from rest, how fast is it moving after it’s displaced 4 m to the right?
v? =02 + 2a,Az so v? = (0)2 + (2)(5)(4) = 40 or v = /40 = 6.32 m/s.



3. Sliding Box (2) Suppose we have the same scenario as
in the previous example, but now the force is directed
at an angle of 30° below the horizontal. What changes?
What acceleration will the box have now?

We analyze this the same way as above, but here since the force is at an angle, we need to
resolve that vector into X and Y components. The vector F is aimed at an angle of 30°
below the horizontal, so it has an X component of F'cos30 and a Y component of magnitude
F'sin 30 and directed downward, so F}, = —F'sin 30 here.

> F, = ma, so Fcos30 = ma, or (50 N)cos30 = (10 kg)a, or 43.30 = 10a, and a, =
4.33 m/s*. We're still pushing with the same magnitude of force (50 N) but the box isn’t
accelerating as rapidly as before. Since we’re pushing down at an angle, some of the force
is being ‘wasted’ trying to push the box into the floor; only part of the force is actually
accelerating the box.

If we look at the Y components of the force: - F, = 0. Our pushing force has a magnitude
of F'sin30 = (50)(0.5) = 25 N and is directed downward. > F, = n —25 —mg = 0 so
n =25+ mg = 25+ (10)(9.8) = 123 N. The normal force is larger here, so we're putting
more stress on the floor.



4. Box Sliding Down Incline : Here we have a box of / {:::m{, ﬂﬁji‘.g'
mass m sitting on a frictionless ramp of angle 8. What
will be the acceleration of the box down the ramp, and
how strong is the normal force?

If we pick a coordinate system with +X to the right and
+Y upward, then this looks like 2-dimensional motion:
the box is changing both it’s X and Y coordinates as it
moves.; We ‘know’ the box will slide down the incline, so
it’s almost always simpler to switch to a new coordinate
system where +X is aligned with the motion along the
incline, with +Y perpendicular to that motion, as noted
in the top figure.

The ‘cost’ of doing this is that we now need to convert all
our forces into components aligned with this new rotated
coordinate system.

See the course website section titled Resolving Vectors for the detailed steps in this process.

In our (rotated) Y coordinates, > F, = 0 since the object is not moving at all in the Y
direction. The normal force is entirely in this direction, and we have a component of the
weight also in the -Y direction, so ) F,, = 0 becomes n — mgcosf = 0 or n = mgcosf. The
normal force is now a bit less than what it was when the box was just sitting on a horizontal
floor.

In our (rotated) X coordinates, 3 F, = ma, so let’s pull out all the X components of any
forces present. The normal force is perpendicular to the incline, which means it’s entirely in
the Y direction and therefore has no X components. The only other force present is the force
of gravity on the box which will have an X component of mgsin 6.

> F, = ma, becomes: mgsinf = ma, and the mass cancels from both sides, leaving a, =
gsin.

Let’s look at this equation at a couple of extreme limits and see if it makes sense:

e In the limit of # = 0 (the ramp is gone and we're just on a flat floor), then a, = ¢gsin0 = 0
and the box will just sit there (or will just continue to slide at a constant velocity).

e In the limit of & = 90, we basically have the object moving straight down under the
influence of gravity and a, = ¢gsin90 = g as expected. (Remember, we have no friction
here (yet).

Wait : in most of the figures I've drawn in class, we have a vertical Y axis, so why did we end
up with a, = 9.8 instead of a, = —9.8 in the second case above?

Remember, we defined our +X axis to be pointing along the ramp from the top towards the
bottom. That means as the angle of the ramp gets steeper, finally reaching 90°, we end up
with a +X axis that is pointing straight downward. The acceleration due to gravity is 9.8 m /s
‘down’ and that direction has become our +X coordinate, so ending up with a, = +9.8 m/s?
is exactly right.



5. Hanging Lamp : Suppose we hang a lamp from the
ceiling and then connect another wire that pulls the lamp
over to the side a bit, resulting in the geometry in the
figure shown. What are tensions in all cables?)

{

As we discussed in class, when we solidly attach cables like this, they can support different
tensions in each segment. Thus we have three unknowns here - the three tensions.

First, we can determine the tension in section 1 easily. Looking at just the lamp itself, the
sum of all the vector forces acting on the lamp are what produces the acceleration of the lamp.
The lamp is not accelerating, so the sum of all the forces on it must be zero. Here we have
Ty, upward and mg downward, so Ty —mg = 0 or Ty = mg = (10 kg)(9.8 m/s?) = 98 N.

At the point where the three sections are connected, the sum of the vector forces acting
right there has to be zero since that point isn’t accelerating (or moving at all). We’ll use
coordinates where +X is horizontal to the right, and +Y is vertically upward. Then )} F, =0
and Y I, = 0 separately at that point. That will give us two equations we can use to solve
for our two unknowns.

Looking just at the Y components of the forces at that point, we have T pulling downward
(with a known magnitude of 98 N) and we have a component of T3 pulling upward. From
the geometry of the figure (again, see the Resolving Vectors section on the website), the
Y component of this force will be T3 cos 30 and it will be in the +Y direction. So > F, = 0
becomes: —T7 + T5c0s30 =0 or T3 = T/ cos 30 = (98 N)/0.8660 = 113.2 N.

Looking at just the X components of the forces acting at that point where the three cables
are connected, we have 75 pulling to the left, and a component of 73 pulling to the right.
> F, =0 becomes: —T5+ T3sin30 = 0 so T, = T3sin 30 but we just found that 73 = 113.2 N
so Tp = (113.2 N)(0.5) = 56.6 N.



6. Hanging Boxes (1) : Suppose we have a
10 kg box on a 30° incline that’s connected
to a box of unknown mass M hanging ver-
tically over the edge as shown in the figure.
What does M have to be for the boxes to
remain stationary and not move at all?

Nothing is accelerating here (or moving at all), so 3 F=0 anywhere we want to look in the
figure.

Looking at the hanging block, we have T acting vertically upward and it’s weight acting
downward, so T'— Mg =0 and T' = Mg but we don’t know the mass yet. At least this gives
us an equation we can use to find the mass, once we know the tension in the cable though.

Moving to the box on the incline, let’s use a coordinate system with +X running along the
slope towards the top, and +Y perpendicular to the slope. Then in this coordinate system,
> F, = 0. In this rotated X direction, we have 7" in the +X direction and a component
of the weight of the 10 kg box in the -X direction. Resolving the force of gravity on that
box into components, we see that the X component will have a magnitude of mgsin30 or
(10 kg)(9.8 m/s*)(0.5) = 49 N. It’s directed downslope, so 3" F, becomes —49 + T = 0 or
T =49 N.

But T=Mgso M =T/g= (49 N)/(9.8 m/s*) =5 kg.

Apparently at this ramp angle, the hanging block only needs half the mass of the block on
the incline for things to remain stationary.



7. Hanging Boxes (2) : Suppose we have a
20 kg box on a table connected to 10 kg
box hanging off edge. We have no friction
present yet. What happens to the boxes?

If we assume nothing is moving, we can find the tension in the cable by looking at the
hanging box. There we have T upward and it’s weight of mg = (10)(9.8) = 98 N downward,
so T —98 =0 and T"= 98 N. The block sitting on the table is connected to that same rope,
so it is being pulled to the right with a 98 N force and there’s nothing else to stop it from
moving, so it will accelerate to the right. The boxes are connected together, so the hanging
block will accelerate downward too. But that’s opposite of what we assumed (that the hanging
block was not accelerating) so we’ve arrived at a contradiction. Our initial assumption must
be wrong: the hanging block does accelerate...

Well that changes everything. If the hanging block is accelerating, then ) F' is not zero
on it. That means the tension in that cable cannot be just equal to the weight of the hanging
block. So we have two unknowns now: the tension in the rope, and the mutual acceleration
that the two blocks are undergoing.

The blocks do move together: the hanging block will accelerate downward, while the box on
the table will accelerate to the right. Let’s create two coordinate systems here: one for each
block. For the hanging block, we’ll have +X be pointing downward; for the sliding block, we’ll
have +X be pointing to the right.

Hanging block: Y F, = ma,. We have T acting upward (which is in our -X direction here)
and it’s weight acting downward (which is in the +X direction) so we have —T 4+ mg = ma
or =T + (10)(9.8) = (10)(a) or | =T + 98 = 10al.

Sliding block: > F,, = ma, and here we have T acting to the right (the +X direction for this
block) so Y F, = ma, becomes: | T = (20)(a) |

That gives us two equations and two unknowns, which we can solve in various ways. In this
case, since the second equation gave us simply 7" = 20a we can substitute 20a for the symbol
T in the first equation, so =7+ 98 = 20a becomes —(20a) 4+ 98 = 10a which we can rearrange
to 30a = 98 or a = 3.2677 m/s>.

Once we have a, we can find 7" since T' = 20a = (20)(3.27) = 65.3 N.

Note that the tension in the cable is no longer equal to the weight of the hanging box - it’s
less.



8. Hanging Boxes (3) : The Atwood Machine A system of
two paint buckets connected by a lightweight rope is released

from rest with the 12 kg bucket initially 2.00 m above the floor. D]Z'Okg
Find the speed of the buckets the instant before the 12 kg one T
hits the floor. (Ignore friction and the mass of the pulley.) 2.00m

’—‘4.0 kg

The heavier block will fall downwards and will pull the lighter block upwards. The weight of
the heavier block is larger, so there will be a net force causing these blocks to accelerate (and
not just move at a constant speed). The heavier block will be accelerating downward, and the
lighter block will be accelerating upward but since they’re tied together, the magnitudes of
these accelerations will be the same.

Coordinates : Let’s use a common coordinate system for each of the two objects, where
the +Y axis is always pointing upward. The two objects are tied together so they will have
a common tension, speed, and magnitude of acceleration, although the directions of these
quantities may be different for each object: one moving up, and one moving down, so we’ll
have to be careful with signs.

Light Block : here we have the tension acting upward, and it’s own weight acting downward.
Our generic Newton’s law Y F' = ma becomes: T — (4)(9.8) = (4)(a) or ’T —39.2=4a ‘

Heavy Block : here we have tension acting upward, it’s own weight acting downward, and
we also know it will be accelerating with the same magnitude as the lighter block (since
they're tied together), but downward. The generic Newton’s law > F' = ma becomes:
T —(12)(9.8) = (12)(—a). Note: since this block is accelerating downward and we defined our

positive direction to be upward, this is —a. This becomes: | T — 117.6 = —12a ‘

This gives us two equations with two unknowns, but we have a couple of common ways to
solve those.

Here, it looks like if we subtract the second equation from the first one, that will result in
cancelling out the variable 7', so we’ll just do that:

(T —39.2) — (T — 117.6) = 4a — (—12a) from which 78.4 = 16a or a = 4.9 m/s>.

Looking at the equations of motion for the lighter block, we can use v? = v? + 2aAy to find
the speed after this block has moved upward by 2 m: v* = 0+ (2)(4.9)(2) = 19.6 or again
v=443 m/s.

We can also find the tension in the cable using either of our original equations: T — 39.2 = 4a

for example gives T' = 39.2 4 (4)(4.9) =58.8 N or T'— 117.6 = —12a gives T' = 117.6 — 12a =
117.6 — 12(4.9) = 58.8 (same result, so that’s a good check).



