
PH2213 Fox : Lecture 10
Chapter 5 : Using Newton’s Laws

This chapter introduces another force type (friction), another type of motion (circular), and yet
another force type (drag forces).

In one sense, friction is just another force to add to the left hand side of
∑

F⃗ = ma⃗, but unfortu-
nately there are two types of friction, and the direction depends on how the object is moving (or if
it is moving at all).

Our textbook uses a single name to represent both types of friction F⃗fr but I prefer the notation
our previous book uses since it clearly differentiates between the two different types of friction.

STATIC FRICTION

• objects ‘stuck together’ in a sense

• static friction provides force needed to oppose motion
that other forces would have created without friction
present

• maximum static friction: fs,max = µsFN , so:

• magnitude: fs ≤ fs,max where fs,max = µsFN

• direction: opposed to the motion that all the other forces
would have produced if there were no friction

As the applied force increases, the
amount of static friction increases
as well, up to a maximum value at

which point the applied force
‘wins’ and the object breaks free
and starts sliding, at which point
fs is gone and is replaced with
kinetic friction (see below).

KINETIC FRICTION

• object sliding along another object (floor, etc)

• magnitude: fk = µkFN

• direction opposite to object’s motion



Actual mechanism is complicated

• microscopically rough surfaces

• stiction (molecular bonds)

SUMMARY

F⃗fr =


Kinetic: fk = µkFN

Static: fs ≤ fs,max where fs,max = µsFN

Direction: Opposes motion



Example : Two sheets of smooth glass
are in contact as shown in the figure. How
much force (applied horizontally) is re-
quired to cause the top sheet (which has
a mass of 10 kg to start moving?
Once it starts moving, what will it’s accel-
eration be?
Glass on glass: µk = 0.4, µs = 0.94

Apply Newton’s Laws to the problem. We start off by
choosing our object (here, the top sheet of glass) and add all
the force vectors acting on it:

• Object has mass, so F⃗g = mg⃗ acting vertically downward

• Object is not moving through the material it’s sitting on,
so there’s some normal force F⃗N perpendicular to the in-
terface (in this problem, straight up)

• External pushing force

• Object isn’t moving, so static friction will be present. If
there were no friction the object would slide to the right,
so fs must be pointing to the left

(a) In the X direction we only have the pushing force and static friction, so
∑

Fx = max = 0 implies
Fpush − fs = 0. The more we push, the larger fs will be to prevent the object from moving. Static
friction can only reach a maximum value of fs,max = µsFN though so once the pushing force reaches
that value, the object will move. Here then, that occurs when Fpush ≥ fs,max = µsFN . Looking in
the vertical direction,

∑
Fy = may = 0 so FN −mg = 0 or Fn = mg = (10 kg)(9.8 m/s2) = 98 N .

fs,max = µsFN = (0.94)(98 N) = 92.12 N . As long as we push with a force less than that, the
object will just sit there. Once we exceed that pushing force, the object will move.

(b) For the second part, we’re assuming that we continue to
push with Fpush = 92.12 N but now the object has broken free
and has started moving, so we have kinetic friction present now.
fk = µkFN and we already determined the normal force above,
so fk = (0.4)(98 N) = 39.2 N .∑

Fx = max so Fpush − fk = ma or 92.12 − 39.2 = 10ax from
which ax = 5.292 m/s2.

The upper sheet of glass will have a large acceleration to the left, so even if we stop pushing quickly,
it will be able to pick up a considerable speed. (Often, sheets of glass are separated with paper or
some other material to make it safer to deal with.)



Addendum : The average reaction time for humans is 0.25 sec to a visual stimulus, 0.17 sec for
an audio stimulus, and 0.15 sec for a touch stimulus.

Here then, for the first 0.15 sec after we feel the glass moving, we’re still pushing on it. How fast
is the sheet of glass moving at that point? How far has it moved?

We found on the previous page that the top sheet of glass will be accelerating at ax = 5.292 m/s2

as long as we keep pushing on it, and the ‘reaction time’ value means that we will be pushing on it
for 0.15 seconds.

How fast will the sheet of glass be moving at the end of that time:
vx = vox + axt = 0 + (5.292 m/s2)(0.15 s) = 0.7938 m/s.

How far will the glass sheet move in this time?
x = xo + voxt+

1
2
axt

2 = 0 + 0 + (0.5)(5.292)(0.15)2 = 0.0595 m.

Apparently this sheet, with very sharp edges, will slide about 6 cm before we can take our hands
off it. (My cousin’s husband was a talented stained glass artist and his hands were covered with
scars as a result of this effect.)



Example: Forces at Angles : A 100 kg crate is sitting on the floor. The coefficients of friction
between the crate and the floor are µs = 0.8 and µk = 0.6.
(a) If we pull horizontally, how much force would be needed to cause the crate to start moving?
(b) What happens if we pull on the crate with a 650 N force 30o above the horizontal?
(c) What happens if we push on the crate with a 1200 N force 30o below the horizontal?

(a) PULL HORIZONTALLY : We essentially did this

problem already (see the glass sheet example). The pulling
force and static friction are both entirely in the X direc-
tion and are the only forces in that direction, so the ob-
ject won’t move until Fpull exceeds the maximum amount
of static friction, which would be fs,max = µsFN . In the
vertical direction, we only have the weight of the object and
the normal force, so FN = mg. Finally fs,max = µsmg =
(0.8)(100 kg)(9.8 m/s2) = 784 N . We have to pull with at
least that much force to cause the crate to start moving.

If we keep pulling on the crate with that 784 N of force, what will the crate’s acceleration be?

The crate has broken free from the static friction holding it in place, so now that it’s moving we’ll
replace fs with fk = µkFN = (0.6)(980 N) = 588 N .∑

Fx = max so +784− 588 = 100a from which a = 1.96 m/s2.

(b) PULLING UP AT ANGLE : Here, we pull with a

smaller force than we found in part (a), but we’re doing
so at an angle (above the horizontal).
Friction is present, so we’ll need the normal force: let’s find
that first.∑

Fy = may = 0 so FN + Fpull sin (30
o)−mg = 0 or FN =

mg − Fpull sin (30
o) = (100)(9.8)− (650)(0.5) = 655 N .

Friction: fs,max = µsFN = (0.8)(655 N) = 524 N .

Looking in the X direction now, we have Fpull cos (30
o) to the right, which is (650 N)(0.866...) =

562.9 N . Looking at all the forces in the X direction, that pulling force component EXCEEDS the
maximum amount of static friction, which means the crate will NOT just sit there: it will accelerate
to the right meaning we have KINETIC friction present, with fk = µkFN = (0.6)(655 N) = 393 N .

Switching to kinetic friction :
∑

Fx = max becomes Fpull cos (30
o) − fk = ma and substituting in

those values: 562.9− 393 = 100a or a = 1.70 m/s2.



(c) PUSHING DOWN AT ANGLE : Here, we push on the

crate with a considerably higher force that was needed be-
fore, but do so at an angle where we’re partly pushing down
on the crate. Repeating the steps we did in part (b):∑

Fy = may = 0 so FN − Fpush sin (30
o)−mg = 0 or FN =

mg + Fpush sin (30
o) = (100)(9.8) + (1200)(0.5) = 1580 N .

Static friction: fs,max = µsFN = (0.8)(1580 N) = 1264 N .

Looking in the X direction now, we have Fpush cos (30
o) to the right, which is (1200 N)(0.866...) =

1039 N . Looking at all the forces in the X direction, that pushing force component is SMALLER
than the maximum amount of static friction that can be present, so this time the crate won’t
move.

The pulling force’s X component of 1039 N to the right is cancelled out with a static frictional force
of 1039 N to the left.

Remember, the actual amount of static friction present is just what’s needed to stop the object
from moving. Here, we only needed 1039 N of static friction to hold the object in place, so that’s
all the static friction that’s actually present.

In this example, static friction can be UP TO 1264 N but we didn’t need that much to hold the
crate in place.



ADDENDUM: Let’s look at the (b) scenario, with
the crate being pulled with a force directed at
some angle above the horizontal.
Once we get the crate moving, suppose we want to
continue pulling it across the floor, but we want
to maintain some constant speed (i.e. a = 0
now). What pulling angle minimizes the amount
of force needed?

‘Constant speed’ so a = 0 here.∑
Fy = max = 0 so: FN + F sin θ −mg = 0 which means that FN = mg − F sin θ .∑
Fx = max = 0 so: −fk + F cos θ = 0 where fk = µkFN which we can write as F cos θ = fk =

µkFN = µk(mg − F sin θ)

Expanding everything out here: F cos θ = µkmg − µkF sin θ

Collecting the F terms together: F cos θ + µkF sin θ = µkmg or F (cos θ + µk sin θ) = µkmg and
finally:

F = ( µk

cos θ+µk sin θ
)mg

With µk = 0.6 as we had in this problem, we can
plot the force needed as a function of angle:
Note that there’s a magic angle that minimizes
the force needed. If we pull horizontally, our force
has to overcome kinetic friction. If we pull at some
angle above the horizontal, some of that force
is reducing the normal force and thus reducing
the amount of friction present, making it easier
to move. At the same time though, less of our
force is in the horizontal direction and available
to overcome that friction, so it looks like there’s a
sweet spot: a particular angle that minimizes the
amount of force we need to provide to keep the
crate moving (at a constant speed).

You’ve done min/max problems via calculus, so let’s look at using that approach here. The factor
we’re trying to find the min/max for is 1

cos θ+µk sin θ
.

The θ only appears in the denominator here, so where the overall function reaches it’s minimum
will be where that denominator alone reaches its maximum. So we’re looking for where:

d
dθ
(cos θ + µk sin θ) = 0

Doing the derivative, that turns into: −sinθ + µk cos θ = 0 or rearranging: tan θ = µk . For our
µk = 0.6 situation, this optimum angle is θ = 30.96o which looks about where the curve reaches its
minimum.



Example: Object on Incline : Static Case

An object of some mass M is placed on an incline
that makes an angle of θ relative to the horizontal.
As we increase the angle, eventually the object
will start sliding down the incline. At what angle
does that happen?

What condition will allow the object to just sit there, even when on an incline? Looking at the force
vectors, we have a component of F⃗g acting down along the ramp, so there must be a force acting
up the ramp to counteract that. We have friction, so let’s assume the situation is static (nothing’s
moving) and see what that implies:

X direction

•
∑

Fx = 0 means: −fs +mg sin θ = 0 or: mg sin θ = fs

• Unfortunately, fs isn’t unlimited: fs ≤ fs,max = µsFN

• Our X equation really becomes: mg sin θ ≤ µsFN .

Y direction (Object never changes it’s Y coordinate, so:)

•
∑

Fy = 0 means: FN −mg cos θ = 0 or:

• FN = mg cos θ.

Substituting that expression for FN into our X equation:
mg sin θ ≤ µs(mg cos θ)

Cancelling the common mg factor from both sides: sin θ ≤ µs cos θ or tan θ ≤ µs .

For example, if µs = 1 (a pretty high value), then tan θ ≤ 1 means θ ≤ 45o. Any higher angle and
the object will accelerate down the incline.

If we have a particular µs present between the two materials, we can gradually raise the angle of
the ramp and the object will still just sit there until we reach the point where tan θ = µs . Any

higher angle and we won’t have enough (static) friction to hold the object in place.

That actually gives us a quick way to estimate the µs between two objects. Put one on the other
and gradually increase the angle until the one on top starts slipping down the ramp.



Example: Object on Incline : Kinetic Case

An object of some massM is sliding on an incline
that makes an angle of θ relative to the horizontal.

(a) What does the acceleration ultimately de-
pend on?

(b) At what angle will the object slide down the
incline at a constant speed? (I.e. where a =
0?)

We’ve raised the angle high enough to start the object sliding. What will its acceleration be?

X direction

•
∑

Fx = max so −fk +mg sin θ = max

• fk = µkFN so we’ll need the normal force to go any further.

Y direction (Object never changes it’s Y coordinate, so:)

•
∑

Fy = 0 means: FN −mg cos θ = 0 or:

• FN = mg cos θ.

Now we can substitute that into our X equation:

−µkFN +mg sin θ = max becomes: −µkmg cos θ +mg sin θ = ma.

Every term in the equation (on both sides) has the same m we can cancel out, leaving us with:
g sin theta− µk cos θ = ax or finally:

ax = g(sin θ − µk cos θ)

Note that ax = 0 (object sliding down the ramp at a constant speed) happens when sin θ−µk cos θ =

0 and rearranging that, when tan θ = µk .

The coefficient of kinetic friction µk is never higher than the coefficient of static fruction µs, so this
angle is always a bit smaller than the angle we found in the previous example.

If we place an object on a ramp and increase the angle until it starts slipping, it’ll always keep
sliding down, picking up speed as it does.

Technically, if we then quickly adjust the angle to the point where it’s just sliding at a constant
speed, that angle would tell us what µk is for these materials, but that’s not very practical.

Let’s look at a better way to estimate µk next.



Example: Stopping Distance
An object of mass M is initially moving at vo to the right on
a flat, horizontal surface. The coefficient of kinetic friction be-
tween the object and the surface is µk.

(a) How far will the object move before coming to a stop?

• Object: the book, crate, car, etc

• Coordinates: The object is sliding to the
right, so we’ll let +X be in that direction,
with +Y vertically upward.

• Forces acting on the object:

(*) Fg downward

(*) FN upward (keeping the object from
passing through the table)

(*) friction (here fk since the object is
moving, and it will be pointing to the
left since the object is moving to the
right)

Applying Newton’s Laws in the Y direction:
∑

Fy = may = 0 so FN −mg = 0 or FN = mg.

Kinetic friction: fk = µkFN so fk = µkmg.

Applying Newton’s Laws in the X direction:
∑

Fx = max so −fk = max

Substituting in the expression we found for fk: −(µkmg) = max or ax = −µkg .

How far will the object slide before coming to a stop?

We have 1-D motion here. The object is initially moving at vo but has an acceleration of ax = −µkg
until it comes to a stop after travelling a distance of d:

v2x = v2ox + 2ax∆x so here (0)2 = v2o + (2)(−µkg)(d) which we can arrange into: d = v2o
2µkg

In the original version of this example, the object was a book initially sliding across a table at
vo = 2 m/s, with a coefficient of kinetic friction between the book and the table of µk = 0.4, which
yields a stopping distance of d = 0.51 m.

An equation like this would apply to any object sliding to a stop on a flat, horizontal surface
where no other forces are present (just gravity, FN , and kinetic friction). A car skidding to a stop
on pavement would be an example. Note the stopping distance goes up as the square of the initial
speed, so a car going twice as fast would need 22 = 4 times longer to come to a stop. Also, d ∝ 1/µk,
so the stopping distance would go up if the road were wet.

(And technically, d ∝ 1/g, so roads on the Moon or Mars (where g is much lower than on the
earth) would have considerably longer stopping distances, so should probably have much lower
speed limits!)



Example : Jurassic Park 2 : at one point a
dinosaur has pushed a trailer of mass 2000 kg
over the edge of a cliff. It hangs there, connected
by a cable to another trailer of mass 4000 kg
which remains on the ground as shown in the
figure. Let the coefficients of friction here be
µs = 0.8 and µk = 0.6.

(a) Verify that the present situation is stable (i.e. static friction is providing enough force to
keep the trailers from sliding over the edge).

(b) The dinosaur is not happy with that and decides to push horizontally on the trailer. How
much force does the dinosaur need to provide to overcome static friction and cause the trailers
to start to move?

(c) If the dinosaur continues to push with the same amount of force, determine the acceleration
present, and the tension in the connecting cable.

(a) Verify the present situation is stable.

For this part, we are assuming that everything is static - nothing is moving. Applying Newton’s
Laws to the hanging object, the sum of all the forces in the vertical direction must be zero, since
the object is not accelerating. We have some tension in the cable, so looking at this object, we
have T upward, and the weight of the object downward.

∑
Fy = may = 0 so +T − mg = 0 or

T = mg = (2000 kg)(9.8 m/s2) = 19, 600 N

Let’s look at the part of the trailer that is sitting on the ground now. In the X direction, we have
the tension pulling it to the right, and static friction acting to the left. That’s all we have in the X
direction, so will this static friction be enough to resist the tension trying to pull the object to the
right?

The maximum amount of static friction will be fs,max = µsFN so we’ll need to find the normal
force here. Looking in the vertical direction and all the forces acting on this object, we have
it’s weight downward, and the normal force upward, so +FN − mg = 0 or here FN = mg =
(4000 kg)(9.8 m/s2) = 39, 200 N . The frictional force then can be up to fs,max = µsFN =
(0.8)(39, 200 N) = 31, 360 N .

Thus it looks like we have more than enough ‘friction budget’ available to keep the trailer in place.

(b) Additional Horizontal Force Needed to Start Moving

The dinosaur needs to add some addition force in the +X direction: just enough force that it
plus the tension that is already there will be enough to reach the maximum static friction, so
Fpush + 19600 = 31360 or Fpush = 11, 760 N . Anything less and there’s still enough left in the
static friction budget to resist the motion. Once we add this much force though, static friction has
reached its limit and the object can start to move.



(c) Acceleration and Tension in Moving Scenario

If we continue to push the (now moving) 4000 kg object to the right with Fpush = 11, 760 N , what
will be the acceleration of the objects?

• The 4000 kg object is moving to the right, so we’ll let +X be to the right for that object.

• The 2000 kg object is moving downward, so we’ll let +X be downward on that object.

Applying Newton’s Laws to the hanging object∑
Fy = may so −FT +mg = ma or here −FT +(2000)(9.8) = (2000)(a) or −FT + 19600 = 2000a .

Applying Newton’s Laws to the object on the ground∑
Fx = max so Fpush + FT − fk = ma

How much kinetic friction is present? (Remember: the objects are MOVING now, so we no longer
have static friction - we have kinetic friction instead.) fk = µkFN and we already found FN earlier,
so fk = (0.6)(39200 N) = 23520 N .∑

Fx = max so Fpush + FT − fk = ma or 11760 + FT − 23520 = 4000a or −11760 + FT = 4000a

We now have two equations and two unknowns. FT appears in each with opposite sign, so let’s just
add these two equations together, leaving us with:

19600− 11760 = 6000a or a = 1.307 m/s2 .

Plugging that value of a back into either of the boxed equations leads to FT = 16987 N . (Less
than the 19600 N of tension we had back before the objects started moving, but remember we need
that to be the case so that the unbalanced forces can create this acceleration.)


