
PH2213 : Examples from Chapter 5 : Applying Newton’s Laws

Key Concepts

Newton’s Laws (basically
∑

F⃗ = ma⃗ ) allow us to relate the forces acting on an object (left-hand
side) to the motion of the object, through its acceleration (right-hand side).

Statics : if an object is not moving, or is moving at a constant speed, then a⃗ = 0 which means that
all the forces must cancel out, as vectors. That means that (separately)

∑
Fx = 0 and

∑
Fy = 0

(and
∑

Fz = 0). This, coupled with the geometry of the situation (the various lengths, angles, etc)
allows us to determine information about the forces (such as tension in cables).

Dynamics : if an object is accelerating, then the forces are not balanced (and vice versa). If we
have an acceleration, then all our machinery from chapters 2 and 3 on equations of motion can be
brought in to help analyze the situation.

Kinetic Friction : If the object is moving, the friction between it and the surface is it sliding on
is given by fk = µkFN . µk is the coefficient of kinetic friction and depends on the two materials
involved.

Static Friction : If the object is not yet moving, then a different kind of friction exists that
changes its magnitude as needed to keep the object from moving. It can only do this up to some
maximum value though, so we write this type of friction as:
fs ≤ fs,max where fs,max = µsFN

Circular Motion : In uniform circular motion, the acceleration vector is directed toward the

center of the circle and has a magnitude of ac = v2/r . Since there is an acceleration, there must

be some force causing the object to move in this circle (perhaps the tension in a string, or static
friction between the tires of a car and the road).

Common Errors

• SEE the list given for chapter 04 where Newton’s laws were introduced.

• Only one type of friction is present at a time. If the object is not yet moving, only static
friction is present. Once it starts moving, only kinetic friction is present.

Notation Convention : Giancoli uses FN as the symbol to represent the normal force, but
you’ll often see the letter n (or even N) used instead. I’ve tried to update most of the notes to
reflect this, but you’ll occasionally still see n used in figures and the text, and will likely encounter
it in that form in some of your other courses.



Example 1 : Friction : Box Sliding to a Stop : Suppose we have a box of mass 10 kg sliding

across a horizontal floor with an initial speed of 5 m/s. The coefficient of kinetic friction between
the box and the floor is µk = 0.6. How long does it take the box to come to a stop? How far did it
travel?

Coordinates : Let +Y be vertically upward, and +X be in the direction the box is moving.

What are all the forces acting on the block? We have its own weight mg downward, some
normal force FN upward keeping the box from going through the floor, and some force of friction,
acting to oppose the motion, so friction will be pointing in the direction opposite the motion.∑

Fx = max : we have fk as the only force in the X direction. The magnitude of the force of
kinetic friction is fk = µkFN and it is in the direction opposite motion, so

∑
Fx = max becomes

−µkFN = max. That’s as far as we can go at this point since we don’t know the normal force yet.∑
Fy = 0 here since the box isn’t accelerating (or moving at all) in the Y direction. Taking all

the Y components of the forces present, we have: FN − mg = 0, so in this simple case we have
FN = mg = 98.0N .

Now that we know the normal force, we can find the force of kinetic friction: fk = (0.6)(98.0) =
58.8 N . −fk = max leads to −58.8 = (10)(a) or a = −5.88 m/s2.

Now that we know the acceleration of the box, we can apply all the machinery from the earlier
chapters related to equations of motion to determine how far the box slides before coming to a stop
and how long, in seconds, that took:

v2 = v2o + 2a∆x becomes: 02 = (5 m/s)2 + (2)(−5.88)∆x or ∆x = (−25)/(−11.76) = +2.13 m.

v = vo + at so (0) = (5 m/s) + (−5.88 m/s2)(t) or t = 0.85 s.

Generic Version : Let’s look at this problem generically where we have a box of mass m sliding
across the floor with an initial speed of vo, and a coefficient of kinetic friction of µk. Then the
magnitude of the force of kinetic friction will be fk = µkFN .∑

Fx = max becomes: −fk = max or −µkFN = max.∑
Fy = 0 becomes: FN −mg = 0 or FN = mg so replacing FN in the

∑
Fx equation:

−µk(mg) = max and dividing the equation by m yields: ax = −ukg .

Substituting this value for ax into our v2 equation: v2 = v2o + 2ax∆x so when the box comes to

a stop: (0)2 + v2o + (2)(−µkg)(∆x) which we can rearrange (careful with signs) into: µk =
v2o

2g∆x

which gives us a simple way to determine the value of µk between two objects. If we can get the
object moving with some known initial speed and then measure how far it slides before coming to
a stop, we can easily compute the value of µk (for that pair of materials).

We can also rearrange the equation to solve for ∆x and find that: ∆x = v2o
2µkg

which gives us the

‘stopping distance’ for an object with an initial speed and coefficient of friction.

Note that the stopping distance is inversely proportional to the coefficient, which means that the
object will slide longer if the interface is more slippery. The stopping distance is also proportional
to the square of the initial speed. If you are in a car and slam on the brakes so that the tires slide
against the road, driving twice as fast means the stopping distance is 22 or 4 times longer.



Example 2 : Pushing Object Initially at Rest : Suppose we have the same 10 kg box as
before but it is now initially at rest.

(a) How much (horizontal) force do we need to apply to start the box moving?

In this case, the box is not initially moving, so static friction is present between the box and the
floor. The harder I push on the box, the stronger static friction holds the box back, but static
friction can only provide up to fs,max = µsFN before giving up.

The geometry of this problem is the same as the previous, so looking in the vertical direction
we have

∑
Fy = may = 0 which implies that +FN − mg = 0 or FN = mg. In the horizontal

direction, we have the pushing force F being opposed by the frictional force. I can keep increasing
the pushing force right up until it reaches fs,max before the box will start moving, so this will occur
when F = fs,max = µsFN = µsmg = (0.8)(10 kg)(9.8 m/s2) = 78.4 N .

(b) If we continue to push with that same force, what acceleration will the box have?

The box now breaks free of the floor and starts sliding in the +X direction. Now we have
me pushing with 78.4 N and being opposed by kinetic friction of magnitude fk = µkFN =
(0.6)(10 kg)(9.8 m/s2) = 58.8 N . The net force in the X direction on the box is now

∑
Fx =

+78.4 − 58.5 = 19.6 N and the crate will start accelerating:
∑

Fx = max so 19.6 = 10ax or
ax = 1.96 m/s2.

10 kg box on an interface with µs = 0.8 and µk = 0.6 . Then FN = mg = 98.1 N and fs,max =
µsFN = (0.8)(98.1 N) = 78.48 N .

This is a ‘real world’ problem we often encounter: it takes more force to start something moving that
it does to keep it moving. This is particularly a problem with certain combinations of materials. A
sheet of glass laying on top of another sheet of glass has a very high coefficient of static friction, but
a very low coefficient of kinetic friction, so it takes a lot of force to start one of the sheets moving,
but once it starts moving it accelerates dangerously rapidly.



Example 3 : Force an an Angle (1) : Suppose we try to move

our 10 kg box by pushing on it at an angle. Let m = 10 kg, the
coefficients of static and kinetic friction between the box and floor are
µs = 0.8 and µk = 0.6. We found earlier that it took about 78 N
to get the crate moving. Suppose we push with F = 100 N but di-
rected 30o below the horizontal. Does the box move? If so, what is its
acceleration?
Coordinates: let +Y be vertically upward, and +X be to the right.

We have friction here, which means we’re going to need to determine the normal force, so let’s deal
with that direction first:∑

Fy = may = 0 so −mg+FN−F sin θ = 0 or: −(10)(9.8)+FN−(100) sin 30 = 0 or −98+FN−50 =
0 or finally FN = 50 + 98 = 148.∑

Fx = max but is it moving or not? Is the force applied enough to cause it to move? Let’s look
at the X forces. We have F cos θ = (100)(0.866) = 86.6N to the right. How much force is friction
providing though? fs,max = µsFN = (0.8)(148.1) = 118.5N . Static friction can provide up to that
amount of force. Hm... that means that the 86.6N force I am applying is not enough to cause the
crate to move. Even though I’m providing more force than before, some of it is going into the
normal force and causing static friction to be higher, and the box will just sit there.

Example 4 : Force an an Angle (2) : Suppose we try pulling

the crate along with a force angled upward this time. When we were
pushing the crate with a perfectly horizontal force, it took about 78 N
to get the box moving, so this time suppose we’re pulling with just
70 N of force, but at the 30o angle shown.∑

Fy = may = 0 so −mg + FN + F sin θ = 0 so: −(10)(9.8) + FN +
(70) sin 30 = 0 or −98 + FN + 35 = 0 or finally FN = 98− 35 = 63N .∑

Fx = max but is it moving or not? Is the force applied enough
to cause it to move? Let’s look at the X forces. We have F cos θ =
(70)(0.866) = 60.6N to the right. How much force is friction providing?
fs,max = µsFN = (0.8)(63) = 50.4, so this time around, friction is not
providing enough force to keep the crate from moving.

Now that we know that the crate will move, we need to redo the problem using kinetic friction
instead of static friction. Nothing else has changed in the geometry of the problem - all the angles
are the same, etc. The only thing that is different now is that we have kinetic friction fk instead
of static friction. Our computation for fk is identical to what we did for fs but now we have to use
µk instead of µs.

fk = µkFN = (0.6)(63) = 37.8N . Thus
∑

Fx = (F cos 30) − fk = (70)(0.866) − (37.8) = 22.82N .
Finally,

∑
Fx = max becomes: 22.82 = 10a or a = 2.282 m/s2.

General Comment : Pushing downward on an object increases the normal force and thus increases
the frictional force, making it harder to move the object. Pulling upward had the opposite effect,
reducing the normal force and thereby reducing friction, making it easier to move the object.



Example 5 : Object on Incline with Friction : Skier on a Slope
Suppose we have an 80 kg skier at the top of a 100meter long, 30o slope,
initially at rest. Suppose µs = 0.20 and µk = 0.10. What happens? Is
there enough static friction to keep the skier in place? If not, how fast
will the skier accelerate down the slope?

What are all the forces acting on the skier?
We have their weight mg directed downward to-
wards the center of the earth. We have a nor-
mal force perpendicular to the slope, keeping the
skier from accelerating into the ground, and we
have friction acting to oppose motion (so friction,
whether it’s static or kinetic, would be directed as
shown in the figure).
We’ll define a coordinate system with +X
aimed along the slope, starting at the skier’s ini-
tial location, pointing downslope. +Y will be
pointing up perpendicular away from the sloping
surface.

Friction and the normal force are already aligned with one of the coordinate axes, but Fg is not,
so we’ll need to get its components. Moving the angles around, we find a right triangle we can use
to determine the components of Fg. Here, we see that the weight has a component down-slope of
mg sin 30 and a component in the -Y direction of magnitude mg cos 30.

(a) Assume static and see if the situation is possible.

Component of the skier’s weight along slope: mg sin 30 = (80)(9.8)(0.5) = 392 N

Normal force: FN = mg cos 30 = (80)(9.8)(0.866) = 679.0 N

Static friction: fs,max = µsFN = (0.2)(679.0) = 135.8 N

Note that the down-slope component of the skier’s weight ismuch larger than the maximum amount
of retaining force that static friction can provide, so apparently there is not enough friction to keep
the skier in place. Result: the skier will start moving immediately.

(b) Now that we know the skier will accelerate down the slope, we need to redo the analysis, this
time with kinetic friction. But really there’s very little new work needed here, since nothing in our
geometry has changed. The only difference is that now we have kinetic friction: i.e. we need to use µk

instead of µs in computing the amount of friction present. So now: fk = µkFN = (0.1)(679.0) = 67.9
so

∑
Fx = 392− 67.9 = 324.1 N∑

Fx = max so so (324.1) = (80)(a) or a = 4.05 m/s2

How fast is skier moving at bottom of slope?

v2 = v2o+2ax∆x or v2 = 02+(2)(4.05)(100) = 810 from which |v| = 28.5m/s (about 64 miles/hour).

We know the skier is moving downslope, which is our +X direction so v = +28.5 m/s.

How long does it take the skier to reach the bottom of the hill? vx = vox + axt so (28.5 m/s) =
(0.0 m/s) + (4.05 m/s2)(t) from which t = 7.04 s.



Example 6 : Jurassic Park Version 2 : at
one point a dinosaur has pushed a trailer of mass
2000 kg over the edge of a cliff. It hangs there,
connected to another trailer of mass 4000 kg which
remains on the ground as shown in the figure. Let
the coefficient of static friction here be µs = 0.8

(a) Verify that the present situation is stable (i.e. static friction is providing enough force to keep
the trailers from sliding over the edge).

For this part, we are assuming that everything is static - nothing is moving. Applying Newton’s
Laws to the hanging object, the sum of all the forces in the vertical direction must be zero, since
the object is not accelerating. We have some tension in the cable, so looking at this object, we
have T upward, and the weight of the object downward.

∑
Fy = may = 0 so +T − mg = 0 or

T = mg = (2000 kg)(9.8 m/s2) = 19, 600 N

Let’s look at the part of the trailer that is sitting on the ground now. In the X direction, we have
the tension pulling it to the right, and static friction acting to the left. That’s all we have in the X
direction, so will this static friction be enough to resist the tension trying to pull the object to the
right?

The maximum amount of static friction will be fs,max = µsFN so we’ll need to find the normal
force here. Looking in the vertical direction and all the forces acting on this object, we have
it’s weight downward, and the normal force upward, so +FN − mg = 0 or here FN = mg =
(4000 kg)(9.8 m/s2) = 39, 200 N . The frictional force then can be up to fs,max = µsFN =
(0.8)(39, 200 N) = 31, 360 N .

Thus it looks like we have more than enough ‘friction budget’ available to keep the trailer in place.

(b) The dinosaur is not happy with that and decides to push on the trailer. How much force does
the dinosaur need to provide to overcome static friction and cause the trailers to start to move?

The dinosaur needs to add some addition force in the +X direction: just enough force that it
plus the tension that is already there will be enough to reach the maximum static friction, so
F + 19600 = 31360 or F = 11, 760 N . Anything less and there’s still enough left in the static
friction budget to resist the motion. Once we add this much force though, static friction has
reached its limit and the object can start to move.



Example 7 : Car and Unbanked Turn : Suppose we have a car taking an offramp or other-

wise moving in a circular path. How fast can the car travel before it starts to slip? (Assume the
roadway is flat and horizontal, not tilted up at an angle.)

Suppose the circular path the car is on has a radius of r = 70 m and that the coefficient of static
friction between the car’s tires and the road is 0.9, which would be typical for good tires and dry
road.

The car is moving in a circle, so it has a centripetal acceleration of ac = v2/r. If there is an
acceleration, there must be a force to provide it, so we need a force of F = ma = mv2/r to keep
the car from slipping.

The force we have available is static friction between the tires and the road (since the tires roll
along the road, rather than slide). The maximum amount of force that static friction can provide
is fs,max = µsn

Looking in the vertical direction at the forces acting on the car, it’s not accelerating in that direction
so

∑
Fz = 0 which implies that FN − mg = 0 or FN = mg. That means that static friction will

provide up to fs,max = µsFN = µsmg.

If we want to travel as fast as possible, we’ll be working right up against that limit, with static
friction providing as much force as it can, so at this extreme limit: mv2/r = µsmg and here we
see that the mass of the car cancels out on both sides of this equation. The mass of the vehicle
wasn’t provided but apparently it doesn’t matter. Dividing the equation by m, we are left with:

v2 = µsgr

Doing this symbolically leads to some generally useful information about designing off-ramps. The
better the coefficient of static friction between the tires and the road, the faster the car can go,
and also the larger the arc the faster it can go. This relationship is not linear though. For a fixed
value of µs, if we want to double the speed, we’ll need to make the radius of curvature four times
larger. That makes the length of the roadway four times longer. Since area is proportional to the
radius squared, we’d have to buy 42 or 16 times as much land. Certainly cheaper to just post a
lower speed limit on the offramp...

For our particular situation, with r = 70 m and µs = 0.9, cars can take travel along this circular
section with a speed of: v2 = (0.9)(9.8 m/s2)(70 m) = 617.4 m2/s2 or |v| = 24.85 m/s (about
55.6 miles/hr)

If we have wet pavement and bald tires, the coefficient of static friction may be only µs = 0.4
(and probably less) which reduces our maximum speed to:

v2 = (0.4)(9.8)(70) = 274.4 or |v| = 16.57 m/s (about 37 miles/hr).

(In either event, we would want to post a speed limit that is smaller than these right-up-against-
the-limit values...)



Example 8 : CDROM : What is the acceleration at the outer edge of a 40X CDROM?

A few years ago, it was claimed that CDROM drive speeds had gotten so fast that cheap CD’s were
flying apart in them.

History: the original 1X CDROM drives spun at a frequency that varied between 200 RPM and
500 RPM (the speed changes depending on what part of the disk the laser is reading so that the
linear speed of the point under the laser is roughly the same at all times).

The radius of a typical CDROM is about 6 cm.

For now, let’s just assume a 1X drive spins with a constant frequency of 360 RPM ′s. A 40X drive
then would spin 40 times faster, and would have a frequency of 40× 360 RPM = 14, 400 RPM .

We’re not in the right units yet though; we need frequency in revolutions per second so:

14,400 rev
1 min

× 1 min
60 s

= 240s−1.

How fast is a point on the outer edge moving?

v = 2πr/T or v = 2πrf = 2π(0.06 m)(240 s−1) = 90.5 m/s (about 202 miles/hr!).

What is the acceleration of a point on the edge?

ac = v2/r = (90.5)2/0.06 = 136, 440 m/s2 or about 13,900 g’s.

That’s a lot. Recall from an earlier 1D motion example of the bullet stopping in water that we found
acceleration of magnitude 45, 000 m/s2 which was enough to shatter the bullet into fragments, and
the acceleration here is much larger. The scenarios are somewhat different though. With the bullet,
the force of contact occurs suddenly and propagates as a shockwave through the material; with the
CDROM, it spins up over a much longer period of time. In this Mythbusters episode they were
eventually able to cause CDROM’s to shatter by spinning them fast enough. They attached disks
to a high speed router and had to spin them at over 20, 000 rev/min for them to break though.

Addendum: what will the acceleration be on the outer edge if the CD is spinning at 20, 000 rev/min?
We could go through all the same steps as above, but we don’t need to. Note that ac = v2/r so is

proportional to v2. Also, v = 2πrf so v is proportional to the frequency. Thus ac is proportional to f 2 .

Here, we’re multiplying the frequency by a factor of 20000/14400 = 1.42857 which means that the
acceleration will be higher by a factor of that value squared, or 2.0408. The acceleration at the outer
edge then in this case will be ac = (2.0408)(136, 440 m/s2) = 278, 450 m/s2 or about 28, 400 g′s.



Example 9 : Gravitron : Version 1

A ‘gravitron’ is a carnival ride consisting of a large
circular ‘room’ that can rotate. People stand up
against the curved wall and the room is spun up
to a high enough speed that the floor can actu-
ally drop away and friction will keep people from
sliding down.

Let’s use Newton’s Laws to analyze this situation and determine how fast the ride needs to rotate
for this to work.

In this figure, the rotation axis is over to the left of
the person in this snapshot (so it’s flipped around
relative to the figure above...).
The person is rotating in a circle, which means
they’re undergoing a radial acceleration of ar =
v2/r. Newton’s Laws require ΣF⃗ = ma⃗ so if we
have an acceleration (vector) in the radial direc-
tion we must also have a force (vector) in that
direction.
Fortunately we do: in this case it’s the normal
force. The force of gravity is straight downward,
and with the floor gone gravity would be pulling
the person downward, so static friction here must
be upward to prevent that.
Let’s use a coordinate system where one of the
axes is in the direction of the acceleration vector
(so radially inward) and then the other axis has
to be perpendicular to that so let’s use a Y axis
with +Y vertically upward.

Applying Newton’s laws then:

• Vertical direction: ΣFy = may so fs − mg = 0 or fs = mg meaning that we need the
magnitude of the static friction to equal the weight of the person.

• Radial direction (with positive towards the rotation axis, which in this snapshot would be to

the left): ΣFr = mar so FN = mv2/r .

The amount of static friction actually present is up to it’s maximum value of fs,max = µsFN , so
looking at the second boxed equation, we see that the faster the ride rotates, the higher FN will be,
meaning a higher value for fs,max. If the ride is rotating very fast, we’ll easily have enough friction
to overcome gravity.



Let’s look at the edge case though: suppose we only have just enough static friction to hold the
person in place, with nothing left over. So we’re looking at the case where fs = fs,max = µsFN .

We found that we need fs = mg and also that FN = mv2/r so making those substitutions:

fs = µsFN becomes: mg = µsmv2/r. m appears in every term of this equation, so we can cancel

that out, leaving us with: g = µsv
2/r or v2 = rg/µs .

Let’s use some realistic numbers here and compute the minimum safe speed and relate that to the
g’s of acceleration the person would feel, and also compute things like the period and frequency of
the room’s rotation.

The coefficient of static friction between clothes and the material the wall is made of can vary quite
a bit. For safety reasons we’ll use the lowest value we expect to encounter which is apparently
around 0.25 and let’s assume the radius of the room is r = 3 m.

• Speed : Rearranging the equation: v =
√
rg/µs =

√
(3.0 m)(9.8 m/s2)/0.25 = 10.84 m/s (a

bit over 24 miles/hr).

• Radial Acceleration : What radial acceleration does this represent? ar = v2/r = (10.84m/s)2/(3m) =
39.2 m/s2 which is 4 g’s, so that’s probably safe.

• Period : How long does it take the room to make one revolution? That is, what is the period
for this circular motion? For circular motion, v = 2πr/T so T = 2πr/v = 2π(3.0m)/(10.84m/s) =
1.74 sec, so it would take just under 2 seconds to make one complete resolution.

• Frequency : What is the frequency of the rotation? f = 1/T = 1
1.74 s

= 0.5753 rev/sec or
f = 0.5753 rev

sec
× 60 sec

1 min
= 34.5 rev/min = 34.5 RPM .



Example 10 : Gravitron : Version 2

Some of these rides have walls that are tilted out
a little instead of being vertical. As we’ll see, the
net effect is that it’s easier to produce the static
friction we need to keep the person from sliding
down the wall when the floor disappears.

Let’s use Newton’s Laws to analyze this situation and determine how fast this version of the ride
needs to rotate.

In this figure, the rotation axis is over to the left
of the person in this snapshot (matching the first
figure above).

The person is rotating in a circle, which means
they’re undergoing a radial acceleration of ar =
v2/r. Newton’s Laws require ΣF⃗ = ma⃗ so if we
have an acceleration (vector) in the radial direc-
tion we must also have a force (vector) in that
direction.

The force of gravity is straight downward, and
with the floor gone gravity would be pulling the
person downward, so static friction here must be
upward (directed along the wall) to prevent that.

Unlike the simpler example, in this case we have
two forces that will have components in the
radial direction (i.e. in the direction of a⃗, as

needed). Both F⃗N and f⃗s have radial components
here, so this analysis will be a bit more compli-
cated than the first example.



Let’s use a coordinate system where one of the
axes is in the direction of the acceleration vector
(so radially inward) and then the other axis has
to be perpendicular to that so let’s use a Y axis
with +Y vertically upward.
We’ve got an angle to deal with now, so here is a
free-body version showing the force vectors act-
ing on the person and the angle(s) involved.

Applying Newton’s laws then:

• Vertical direction: ΣFy = may so FN sin θ + fs cos θ −mg = 0 or FN sin θ + fs cos θ = mg

• Radial direction (with positive towards the rotation axis, which in this snapshot would be to

the left): ΣFr = mar so FN cos θ − fs sin θ = mv2/r .

As we did in the simpler example, let’s look at the edge case where fs is as high as it can be: we’re
using all the friction ‘budget’ we have to keep the person in place, so we’re looking at the case where
fs = fs,max = µsFN .

Replacing fs with µsFN in each of the two boxed equations yields:

• FN sin θ + µsFN cos θ = mg or FN(sin θ + µs cos θ) = mg

• FN cos θ − µsFN sin θ = mv2/r or FN(cos θ − µs sin θ) = mv2/r

Suppose we just divide the second equation by the first:

• FN (cos θ−µs sin θ)
FN (sin θ+µs cos θ)

= (mv2/r)
mg

FN appears in both terms on the left side, so will cancel out. m appears in both terms on the right
side so will cancel out, leaving us with:

• cos θ−µs sin θ
sin θ+µs cos θ

= v2

rg

Finally, rearranging this to solve for the speed:

• v2 = rg( cos θ−µs sin θ
sin θ+µs cos θ

)



First, let’s check that this is consistent with the simple(r) version of the example. As the wall
becomes vertical (i.e. when θ = 0o ), this more generic version becomes the same situation as we
had in the first example. Plugging in θ = 0o here, cos 0 = 1 and sin 0 = 0 so we end up with
v2 = rg( 1−0

0+µs
) or v2 = rg/µs which is exactly what we had before.

In the previous example (vertical walls) we found we needed v = 10.84 m/s, which yields a radial
acceleration of 39.2 m/s2 or 4g which is probably safe but could be uncomfortable.

If we have the wall tilted over at 20o from the vertical and assume we have the same µs = 0.25 and
r = 3, plugging in these values yields v = 6.598 m/s, which is considerably slower than before. The
radial acceleration that the person would feel now is just ar = v2/r = 14.5 m/s2 or just under 1.5
g’s (which will make the insurance company happier).

If we let θ be a variable and solve for v(θ) we find an interesting graph:

If the walls are vertical (θ = 0o ) the rotational speed needed is about 10.84 m/s and as the angle
increases (the walls start tilting over), the speed needed gradually reduces but then something odd
happens at high angles. The speed needed drops to zero at about θ = 76o. What’s happening
there?

Well, in that case, the person is just at rest on a tilted wall (ramp) and we’ve done that problem
before. At this angle, apparently the upslope static friction present is just enough to cancel out
the downslope component of gravity. We did an example in class (and in the homework) where we
found that the maximum angle where static friction will be enough to hold something in place on
a ramp was found to be tan θ = µs BUT we defined our angle differently when we derived that
result: we used an angle that was measured up from the horizontal, not down from the vertical as
we’re using here. Using this definition of the angle, this critical angle is cot θ = µs or equivalently
tan θ = 1/µs. For the µs = 0.25 we have here, we find that θ = 75.96o : right where we see the
graph drop to v = 0.



What if we have no friction at all?

We did a problem like this is class, with a car going around a circular ramp that was tilted up at
an angle, so what happens here if we have no friction?

v2 = rg( cos θ−µs sin θ
sin θ+µs cos θ

)

and letting µs = 0 yields v2 = rg cos θ
sin θ

or v2 = rg/tanθ.

Again, we’re defining θ differently than we did in class: here we’re measuring θ relative to the
vertical. With r = 3 m and θ = 20o, we get v2 = 80.78 m/s, which implies a radial acceleration of
ac = v2/r = 26.9 m/s2 or around 2.7 g′s, which will make the insurance company nervous, so we
better make sure there’s at least some friction present.


