
PH2213 Fox : Lecture 13
Chapter 6 : Gravitation

NOTE: this is just a summary of the highlights of the chapter, mostly
from sections 1, 3 and 4. We don’t go into enough detail on this material
to include it on any of the tests, though.

This chapter introduces the ‘real’ force of gravity that exists between any masses. Near the surface
of the Earth, we’ve been approximating this as F⃗g = mg⃗ with g⃗ varying slightly but for the most
part being a vector with a magnitude of about 9.8 m/s2 and a direction ‘downward’ towards the
center of the planet.

The actual force of gravity is somewhat more complicated than this though, and if we are not near
the surface, we’ll need to use a more accurate version.

Newton (1687) : (point) masses attract with a force
proportional to each of their masses, and inversely pro-
portional to the distance between them.

Magnitude: FG = Gm1m2

r2

Direction: (always attractive)

Determining G : The value of the universal gravita-
tional constant G is tiny, but measurable even here on
Earth.

Cavendish experiment (1798) : two masses in the
form of a dumbell hanging from a thin wire. When an-
other mass is brought near, they will attract one another
and cause the wire to twist a tiny amount. The twist
isn’t visible, but using a mirror and a light-source, that
tiny change can be amplified and measured, leading to
an estimate for G.

Latest result : G = 6.6743× 10−11N m2/kg2

(See example 2 in the examples06.pdf file for example.)

What about non-point masses? Calculus to the rescue. Break up objects into an infinite
number of infinitesimal point masses, and ‘do the integral.’

The result is surprisingly simple: as long as an object is spherical and uniform, mathematically it
acts (mathematically) exactly like a point mass with all the mass located at it’s center. This even
holds if the density is NOT uniform, but at least only depends on r (so ‘spherically symmetric’).

For planet-sized objects and larger (stars), this is almost always ‘good enough’.



Example: Bowling Balls on Wires

Two 5 kg bowling balls are hanging from cables connected to the ceiling. The balls each have a
diameter of 16 cm, so let’s hang them from 1 m long wires such that the balls are 1 cm apart
(meaning their centers are exactly 17 cm apart). What is the gravitational force between them?
The cables appear vertical but actually are not. What angle does each cable make with the vertical?

The upper figure shows the nominal situation. We see
the two balls hanging ‘vertically’ on the cables. The two
bowling balls are attracting each other gravitationally
though, there is a force pulling them towards each other.
An exaggerated diagram of this is shown in the middle
figure, where we’ve also replaced each bowling ball with
its equivalent point mass.

Focusing on the bowling ball on the right, what are the
forces acting on it? We have the force the earth is exert-
ing on it (we’ll use the usual Fg = mg we’ve been using
before). We also have the gravitational force that the
ball on the left is exerting on this one, and we have some
tension in the cable.

Everything is at rest here, so
∑

F⃗ = 0. Breaking this
into components:

∑
Fx = 0 so −F1 on 2 + FT sin θ = 0 which we can write as FT sin θ = F1 on 2.∑
Fy = 0 so −mg + FT cos θ = 0 which we can write as FT cos θ = mg

Dividing the first equation by the second will let us cancel out the tension term:

FT sin θ
FT cos θ

= F1 on 2

mg
or just tan θ = F1 on 2/mg.

How much force is ball 1 exerting on ball 2? F = Gm1m2/r
2 in general so here: F = (6.67 ×

10−11)(5)(5)/(0.17)2 = 5.77× 10−8 N .

The weight of the ball is Fg = mg = (5 kg)(9.8 m/s2) = 49 N so:

tan θ = (5.77× 10−8)/(49) = 1.178× 10−9 from which θ = 6.75× 10−9 deg. (Which is close enough
to vertical that the cables certainly look like they’re hanging straight down, even if they’re not
quite...)

Physically how far did the ball move? sin θ = (x)/L = x/(1 m) which leads to x = 1.12× 10−9 m.
That’s barely over one nanometer, or only about 10 atoms wide.

Measuring G using an experiment like this would be hopeless, hence the clever approach done by
Cavendish.



Relating Fg and FG

On surface of planet (like Earth), we can use the
calculus result just mentioned and treat the Earth
as a sphere of radius R, and pretend all it’s mass
M is located at the very center. In that case, the
‘real’ force of gravity acting on an object of mass
m (on the surface) would be: FG = GMm

R2

The Earth is spherical-ish, so R is (sort of) con-
stant, meaning we can relate this to the Fg = mg
we’ve been using:
FG = GMm

R2 = mg, which implies:

g = GM/R2

We can measure g and R directly, so can use this to calculate the mass of the Earth:

M = gR2/G = (9.8)(6.38× 106)2/(6.67× 10−11) = 5.98× 1024 kg

We can determine the mass of any planet/moon we land on the same way. Knowing it’s size and
measuring the local value of g (by just dropping something and timing how long it takes to hit the
‘ground’), this directly provides the mass of the planet/moon.

This figure shows how g varies around the Earth, due mostly to the variations in the density or
thickness of the crust.



Gravity is a ‘radially inward’ force, which is just
what we need for circular motion, so handles sit-
uations like planets around stars, and moons and
other satellites around planets.
Consider a (relatively) light object of mass m or-
biting a much heavier object of mass M in a cir-
cular path (the radius of that ‘orbit circle’ being
r).∑

Fr = mar so GMm/r2 = mv2/r or

GM/r = v2

Note that the mass of the satellite (or moon)
cancels out here. (REMINDER: we’re assuming
m << M here. If that’s not the case, a more
complicated analysis is needed.)

The International Space Station orbits about 254 miles above the sur-
face of the Earth. Determine it’s orbit speed and period.

ORBIT RADIUS : Referring to the figure above, the ISS is orbiting 254 miles above the surface
of the Earth, so the actual radius of it’s orbit (the circle centered at the center of the Earth) would
be the radius of the Earth plus that additional distance:

• radius of earth : RE = 6.38× 106 m

• height above surface: h = 254 miles× 1609 m
1 mile

= 4.26× 105 m

• radius of orbit circle (sum of above): r = RE + h = 6.81× 106 m .

We found for circular orbits: v2 = GM/r so v =
√
(GME/r)

G = 6.67× 10−11 N m2/kg2

ME = 5.98× 1024 kg
r = 6.81× 106 m (radius of orbit circle)

Result: v = 7653 m/s (about 17,120 miles/hour).

Period: v = 2πr/T so T = 2πr/v = 5588 sec = 93.1 min

Note: satellites that orbit within a few hundred miles of the Earth’s surface are referred to as
Low-earth orbit (LEO) satellites, with orbit periods of slightly over 90 minutes.

This web page shows the orbits of a couple of the current LEO satellite constellations used to
provide internet: https://satellitemap.space

https://satellitemap.space


Geostationary Orbits

For any light object orbiting a much heavier object, we have:

• v2 = GM/r so the farther away the object is orbiting, the slower its speed

• T = 2πr/v so if we’re farther away (larger r) and moving at a slower speed v, the period will
be much longer.

One very convenient orbit is to put the satellite in an equatorial plane with a period is exactly one
day, which means that the satellite takes the same amount of time to go once around in it’s orbit
as the Earth takes to rotate once on it’s axis. The effect is that the satellite always appears in the
same spot in the sky, which means that the dish mounted on your house or in your yard can always
point in the same direction. Objects at that distance are called geostationary satellites.

Satellites in the DirecTV and Dish networks are located out there, as are some weather satellites
and others (older satellite internet providers).

Let’s determine how far away from the Earth they need to be located.

v2 = GM/r and v = 2πr/T so replacing v in the first equation yields: 4π2r3 = GMT 2

giving us a direct relationship between the period and orbit radius for objects orbiting a given heavy
central object of mass M. For example, if the central body is the Sun we could use this to compute
the periods for the various planets orbiting the Sun. If the central body is the Earth, this would
connect the periods of satellites (including the Moon) to their orbit radii.

These figures plot T 2 vs r3 for the planets (out to Saturn) around the Sun, and also for the moons
orbiting Saturn and Jupiter.

Planets orbiting the Sun Moons of Saturn and Jupiter

Slope of line ultimately yields Msun.

Slopes yield masses of these planets. Note Jupiter
is only 10% larger than Saturn. If they were made
of the same ‘stuff’ that would make Jupiter about
33% heavier but the slope here shows that Jupiter
has about three times the mass of Saturn.



Returning to our geostationary orbit situation, we’re trying to find where to put a satellite so
that it has a period matching the Earth’s rotation, so the satellite stays at the same point in the
sky at all times.

One complete (360 deg) rotation of the Earth takes 23 hours, 56 minutes, and 4.09 sec, for a total
period of T = (23 hours)× 3600 sec

1 hour
+ (56 min)× 60 s

1 min
+ 4.09 s = 86164.1 sec.

Using 4π2r3 = GMT 2, we find we need an orbit radius of r = 4.217 × 107 m or 42, 174 km or
26, 211 miles (that would be from the center of the Earth, so that’s about 22, 250 miles above the
surface of the Earth).

Satellite-based Internet

For geostationary satellite-based internet, this distance introduces a considerable amount of gaming
lag. The signals have to go from your computer up to the satellite, then down to the server to
calculate the result, which then has to go back up to the satellite and back down to your computer.
The net result is that the signal has to travel an additional path of 4×22, 250 miles = 89, 000 miles.

These (radio) signals travel at the speed of light (about 186, 282 miles/sec) so this introduces a
total lag of about 478 ms (on top of the usual lags that terrestrial internet providers have, resulting
in about a half-second delay overall.

In recent years, several LEO internet satellite constellations have been launched, cutting the travel
distance down by factor of 40 or so, so this ‘speed of light lag’ effect only adds about 12 ms to the
other lags present (instead of 478 ms). (Unfortunately the ‘cost’ is that nearly all ground-based
telescope images are cluttered with streaks representing light reflected from the thousands of such
satellites now in orbit.)

See https://satellitemap.space for a ‘live’ graphic showing some of these constellations.

https://satellitemap.space


The figure below illustrates some of the common regimes for satellites with some examples. The
International Space Station and Hubble space telescope are both about 340 miles above the surface
(along with thousands of other satellites and space-debris). GPS satellites are in what is called a
semi-synchronous orbit where they take exactly 12 hours to orbit the Earth. Over the past year,
several companies have started to launch large fleets of satellites into low-Earth orbit to provide
satellite-based internet with very low lag (since they’re only a few hundred miles above the surface).
Since their orbit periods are on the order of 90 minutes though, each individual satellite will zip
by overhead quickly: thousands (or tens of thousands) of such satellites are needed to provide
continuous internet access (which is driving astronomers nuts).



Determining Mass of Planets and Moons

We previously found that for a (light) object orbiting a (much heavier) object, the orbit radius and
period were related:

4π2r3 = GMT 2

That means that if we can actually measure both r and T , we can determine the mass of the body
it’s orbiting:

M = 4π2r3

GT 2

• Observing the (multiple) moons orbiting Jupiter, Saturn, Mars, etc, the masses of those
planets can be found very accurately. (See example 5 in the examples06.pdf file where we
estimate the mass of the Sun using information about the Earth’s orbit.)

• Putting satellites in orbit around the Earth’s moon allowed it’s mass (and therefore it’s surface
value of g = GMmoon/r

2
moon) to be determined accurately prior to the moon landings.

• Any object that is observed to have other objects orbiting it can have it’s mass determined,
including other stars now. As of now, 5587 planets have been found orbiting 4150 stars (with
945 of those stars having multiple planets), allowing estimates of the masses of those stars
to be found. Even some large asteroids in our own solar system have tiny moons (really just
rocks) orbiting them, so their masses have been determined as well.

An interesting application of this was to ‘measure’ the mass of the black hole at the center of the
Milky Way (called Sagittarius A*).

About 20 years of images taken of that location shows stars orbiting that object. From the orbit
radii and periods, the mass of the black hole was estimated to be about 4.1 million times the mass
of our Sun. A short movie, condensing these observations can be found here:

https://www.eso.org/public/videos/eso1825e/

https://www.eso.org/public/videos/eso1825e/


ADDENDUM : Example: just recently (late
2022), NASA purposely crashed a spacecraft into
a small asteroid to test the idea of deflecting as-
teroids on collision courses with Earth. The ‘im-
pactor’ spacecraft had a mass of about 600 kg and
struck the asteroid travelling at 6600 m/s (about
15, 000 miles/hr).
The target asteroid was called Dimorphos, which
is orbiting a larger asteroid called Didymos.

• Dimorphos is observed to be orbiting Didymos with a period of T = 11 hr 55 min at a
distance of 1.18 km from Didymos. Use that information to estimate the mass of the central
body (Didymos).

Converting the given information, we have a period of T = 42900 sec and Dimorphos’ orbit
radius would be r = 1180 m.

For a light object orbiting a much heavier object, the mass of the central body is:

M = 4π2r3

GT 2 = (4)(π2)(590 m)3

(6.67×10−11 N m2/kg2)(42900 s)2
= 5.28× 1011 kg

The value quoted in the literature is M = 5.23 × 1011 kg, about 1 percent off, which is
explained by the fact that the lighter object isn’t really moving in an exact circle, but an
ellipse.

• Didymos is roughly 780 meters across, while Dimorphos is only about 163 meters across.
If they’re made of the same material (i.e. have the same density), estimate the mass of
Dimorphos.

We can short-cut this calculation a bit. Density is mass/volume so mass is volume times
density: M = ρV . If we assume the objects are spheres (they’re not quite), then V = 4

3
πr3.

Thus the mass is proportional to the volume, which itself is proportional to the cube of the
radius. Ultimately then, M ∝ r3. That means we can set this up as a ratio problem:

MDimorphos

MDidymos
=

r3Dimorphos

r3
Didymos

or

MDimorphos = MDidymos ×
r3Dimorphos

r3
Didymos

= (5.28× 1011 kg)× 1603

7803
= 4.56× 109 kg. (The estimate

quoted in the literature is 4.8 × 109 kg; here the difference is probably due to the fact that
the bodies are only approximately spherical.)

• What density did we find? ρwater = 1000 kg/m3 and the density of the rocks in the Earth’s
crust are around 2600 kg/m3. Metals like iron can have densities of around 8000 kg/m3.
What do these things appear to be made of?

Density is mass/volume so ρ = M
V
. We assumed the same density for each, so could use

data from either object to estimate the density. Using Didymos, M = 5.28 × 1011 kg and
V = 4

3
πr3 = 4

3
π(390)3 = 2.485 × 108m3 (note we needed the radius here, not the diameter,

so r = (780 m)/2 = 390 m), we find ρ = 2126 kg/m3. (The value quoted in the literature is
2170± 350 kg/m3, so looks like we’re pretty close on this one too.) They’re both probably a
mixture of rock and water (well, ice).



• What is g on the surface of Didymos?

We found earlier that g = GM/r2 with G = 6.6743 × 10−11N m2/kg2 so g = (6.6743 ×
10−11)(4.8× 109)/(390)2 = 2.1× 10−6 m/s2

• If a person can jump 50 cm vertically on Earth, how high would they jump on Didymos?

Using our v2 equation in the vertical direction, v2 = v2o + 2ay∆y so from the ground to the
‘apogee’ of this jump: (0)2 = v2o +(2)(−g)(h) resulting in v2o = 2gh = (2)(9.8)(0.5) (on Earth)
resulting in an initial vertical speed of vo = 3.13 m/s.

On Didymos, with it’s tiny value for g : h = v2o/2g = 2.33× 106 m or 2330 km (!).

(That’s far enough away from the asteroid that we can’t use a constant value for g and we’ll
have to tackle this another way.)

This figure just shows Didymos (the larger, central object) and Dimorphos (the smaller asteroid
orbiting it) in comparison to some of the buildings and structures here on Earth.

If the smaller asteroid hit the Earth, it would destroy a city block. The larger one would take out
a major city.

(The acronym DART stands for ‘Double Asteroid Redirection Test.’)


