
PH2213 : Examples from Chapter 6 : Gravitation

Key Concepts

Two point-mass objects of masses m1 and m2 separated by a distance of r will attract each other
with a gravitational force of magnitude F = Gm1m2

r2
. The direction of this force is always attractive

(i.e. along a line between the two points, and towards each other).

G = 6.67× 10−11 N m2/kg2

A sphere with a uniform density or a density that only depends on the distance to the center of the
sphere (i.e. ρ(r) only) can be ‘replaced’ (as far as the gravitational force calculations go) by a point
of the same mass located at the center of that sphere. (Provable via calculus, once you’ve gotten
to volume integrals.)

If a spherical planet has such a density distribution, then the local acceleration due to gravity on
the surface of the planet is g = GM/R2 where M is the mass of the planet and R is its radius.

For a light mass in orbit around a (very) much heavier mass M (enough heavier that we can treat
the larger mass as stationary), we can relate the period and orbital radius of the smaller mass (tiny
moon or satelite perhaps):

T2 = ( 4π2

GM
)r3

Common Errors

• F⃗G is a vector force that is always attractive

• Newton’s third law applies here: this is an interaction force; each object exerts the same force
on the other

• math : we’re usually dealing with entities with large positive or negative exponents here so
be careful in your calculations

• units : when dealing with planets and astronomical bodies, distances and times are often
given in units other than simple meters and seconds



Example 1 : Three masses are shown in the figure. Determine the (vector) acceleration of mass 3
due to the gravitational attraction from masses 1 and 2. Assume the masses are uniform spheres
(i.e. treat them as point-masses).

Mass 1 is a 1000 kg ball located at the origin. Mass 2 is
a 500 kg mass located at x = 2 m, and mass 3 is a 10 kg
mass located at y = 4.
First, we’ll draw in vectors representing the force that
each mass is exerting on ball 3. Gravity is an attractive
force: each pair of objects is exerting a force on the other.
From Newton’s laws,

∑
F⃗ = ma⃗ but remember what

that means: the forces acting on an object are what
produce the acceleration of that object. So here, we
have to consider just the forces that the other two balls
are exerting on mass 3. Balls 1 and 3 are exerting equal
and opposite forces on one another, ditto with 2 and 3
and between 1 and 2. Most of that we don’t care about:
it’s only the forces being exerted on ball 3 that will affect
it’s motion.
So first, let’s draw a figure showing the forces that are
being exerted on ball 3. It’s being attracted towards
ball 1 so that force is exactly in the negative Y di-
rection. It’s being attracted towards ball 2 at some
angle θ which we can determine from the coordinates:
tan θ = (2 m)/(4 m) = 0.5 so θ = 26.565o. We’ll use
that later to determine the components of that force.

Force of 1 on 3 : the magnitude will be F = Gm1m3/r
2
13 or F = (6.67× 10−11)(1000)(10)/(2)2 =

1.668 × 10−7 N As a vector, it is pointing in the −Y direction, so F⃗1 on 3 = −1.668 × 10−7ĵ (in
newtons).

Force of 2 on 3 : the magnitude will be F = Gm2m3/r
2
23. The distance (squared) between 2 and

3 will be r223 = (2)2 + (4)2 = 20 m2 so: F = (6.67× 10−11)(500)(10)/(20) = 1.668× 10−8 N

We need to convert this into a vector (see bottom figure). The X component of this force will be
F sin θ and will be in the +X direction. The Y component of this force will be F cos θ and will be
in the −Y direction. We’ve already determine the angle though, so this becomes:

F⃗2 on 3 = (7.46× 10−9)̂i− (1.49× 10−8)ĵ.

From Newton :
∑

F⃗ = ma⃗ so we can add the two force vectors and divide by the mass of ball 3 to
determine the acceleration of that ball:

∑
F⃗ = (7.46× 10−9)̂i− (1.82× 10−7) = (10 kg)⃗a so finally:

a⃗ = (7.46× 10−10)̂i− (1.82× 10−8)ĵ (in m/s2).



Example 2 : Two 1000 kg wrecking balls are hanging from cables connected to the ceiling. Their
centers are 20 cm apart. What is the force between them? The cables appear vertical but actually
are not. What angle does each cable make with the vertical?

The upper figure shows the nominal situation. We see
the two balls hanging ‘vertically’ on the cables. The two
wrecking balls are attracting each other gravitationally
though, there is a force pulling them towards each other.
An exaggerated diagram of this is shown in the middle
figure, where we’ve also replaced each wrecking ball with
its equivalent point mass.

Focusing on the wrecking ball on the right, what are the
forces acting on it? We have the force the earth is ex-
erting on it (i.e. the usual Fg = mg we’ve been using
before). We also have the gravitational force that the
ball on the left is exerting on this one, and we have some
tension in the cable.

Everything is at rest here, so
∑

F⃗ = 0. Breaking this
into components:

∑
Fx = 0 so −F1 on 2 + Ft sin θ = 0 which we can write as Ft sin θ = F1 on 2.∑
Fy = 0 so −mg + Ft cos θ = 0 which we can write as Ft cos θ = mg

Dividing the first equation by the second will let us cancel out the tension term:

Ft sin θ
Ft cos θ

= F1 on 2

mg
or just tan θ = F1 on 2/mg.

How much force is ball 1 exerting on ball 2? F = Gm1m2/r
2 in general so here: F = (6.67 ×

10−11)(1000)(1000)/(0.2)2 = 1.668× 10−3 N .

The weight of the ball is mg = (1000 kg)(9.8 m/s2) = 9800 N so:

tan θ = (0.001668)/(9800) = 1.7× 10−7 from which θ = 9.75× 10−6 deg. (Which is close enough to
vertical that the cables certainly look like they’re hanging straight down, even if they’re not quite...)



Example 3 : The space shuttle orbits the Earth at a height of 400 km above the surface of the
earth. What is its period? (I.e. how long does it take to make one complete circle around the
earth?)

The shuttle is moving in a circle with a radius r equal to
400 km plus the radius of the earth. Since it’s moving in
a circle, there is a radial acceleration of ar = v2/r. There
must be a force creating this acceleration of F = ma
where m is the mass of the shuttle.
This force is being provided by the gravitational force
between the Earth and the shuttle, so F = GMm/r2

where M is the mass of the earth.
So:

∑
F = ma becomes GMm

r2
= mv2

r
and we can cancel

some common terms here, leaving us with: GM/r = v2.
We’re interested in the period, but v = 2πr/T so making
that substitution and rearranging to solve for T we get:

T 2 = 4π2r3

GM
.

That’s a generic result for any small body orbiting around a larger (much heavier) one that can
be treated as not moving. It shows that T 2 is proportional to r3, as noticed hundreds of years ago
for the planets orbiting the sun, and for moons orbiting Jupiter. The constant of proportionality
depends on the mass of the ‘central object’ - i.e. the thing about which the others are orbitting.
(M would be the mass of the Sun, in the case of the planet’s orbits; it would be the mass of Jupiter
in the case of that planet’s moons, etc).

For our shuttle situation, it’s moving in a circular orbit but we have to be careful determining its
radius. It’s orbitting 400 km above the surface of the earth, which we’ll assume is a sphere of radius
6380 km so the radius of the circular orbit the shuttle is in is actually the sum of these: 6780 km
or 6, 780, 000 m.

Looking up the mass of the Earth, M = 5.98× 1024 kg so we have everything we need to compute
the period now:

T 2 = 4π2(6,780,000)3

(6.67×10−11)(5.98×1024)
= 3.08× 107 from which T = 5554 sec, which is about 93 minutes.

A good rule of thumb is that objects in ‘near earth orbit’ (NEO) are generally said to have orbital
periods of about 90 minutes.



Example 4 : The earth rotates once on its axis every 24 hours (more or less). Where would we
need to put a satellite so that it also takes 24 hours to rotate around the earth, thereby creating a
geostationary satellite that is always in the same place in the sky (convenient for satellite-based
TV transmission)?

This is the reverse of the previous problem. In this case we have a desired period for the satellite: 1
day, or T = 86, 400 sec and want to determine the orbital radius r. Rearranging the boxed equation
from the previous problem to solve for r:

r3 = GMT 2

4π2 . Using the mass of the earth and the desired period of T = 86, 400 sec we find that
r3 = 7.54× 1022 or r = 4.225× 107 meters or about 42, 250 km. The radius of the earth is about
6380 km so this is 35, 870 km above the surface of the earth.

Note: light travels at a speed of about 3× 108 m/s so it takes a signal about 0.12 sec to get from
the surface of the earth to this satellite, then another 0.12 sec to get back. That’s a total of 0.24 sec
or 240 ms which makes satellite-based internet service very laggy as far as playing online computer
games...

Example 5 : The earth takes 1 year to make a complete orbit around the Sun. The Earth doesn’t
move in quite a perfect circle, but assume it does, with an orbital radius of 149.6×106 km. Compute
the mass of the Sun.

We’ve already derived a generic equation relating orbital radius, period, and the mass of the central
object so let’s use that but rearrange to solve for M :

M = 4π2r3

GT 2

This is kind of useful because it lets us determine the mass of anything as long as we can spot
something else orbitting it. Prior to the moon landings, satellites were sent to orbit the moon to
get good pictures of potential landing sites, but also so that a very accurate value for the mass of
the moon could be determined.

Getting back to the problem at hand, the orbital period of the Earth around the Sun is one year,
or T = 365.25636.. days = 3.1558× 107 sec. The orbital radius is r = 1.49× 1011 m so using those
values we find that M = 1.97 × 1030 kg which is pretty close to the value given in the book. The
orbit of the earth isn’t quite a perfect circle, which introduced a small error.



Example 6 : Many stars are binary meaning there are two stars that rotate around one another.
Assume we have two equal-mass stars that are separated by a constant distance of 7.6×1011 m and
make one revolution every 14.0 yr. What must the mass of each of these stars be?

The figure shows this situation. The stars are moving
in a circular path about a central point midway between
them, so each is moving in a circle of radius r = d/2
where d is the given separation distance. This means
there is a radial acceleration of ar = v2/r which requires
a force of F = ma = mv2/r. This force is being provided
by the gravitational attraction of the two bodies, which
is F = Gmm/d2 (we’ve used the fact that the masses of
the two stars are the same in this problem).

So: Gm2

d2
= mv2

r
but v = 2πr/T so Gm2

d2
= m4π2r/T 2 but r = d/2 so this becomes (after cancelling

a common m from each side:

Gm
d2

= 2π2/T 2 or rearranging to solve for m:

m = 2π2d3

GT 2

Note how this is slightly different than the previous orbit problems we did. In those, we have a
heavy, stationary ‘central object’ about which the other (very light) object (satellite, moon) was
orbitting. In this case we have two things of the same mass circling around each other with the
center of their orbits being midway between them.

Substituting in the values here, d = 7.6 × 1011 m, T = 14.0 years or T = (14 yr) × 3.16×107 sec
1 yr

=

4.424 × 108 sec, and G = 6.67 × 10−11N m2 /kg2 we arrive at m = 6.64 × 1029 kg (about 1/3 the
mass of the Sun, in this scenario).



Example 7 : Consider the moon’s orbit around
the earth. It’s tempting to draw it as a circle and
use the same analysis we did with other earth-
orbiting satellites. The moon’s mass is quite large
though, about 1/81 of the mass of the Earth,
which is too large to ignore. The radial force the
earth exerts on the moon causes it to move in a
circular orbit, but the moon is exerting exactly
that same amount of force on the Earth, causing
it to move in a circular orbit as well! It’s not as
extreme as the binary star example, but there is
some point about which both objects are rotat-
ing. Let’s find where that is.

Remember that for spherically symmetric objects, we can pretend that all the mass it located at a
point at its center, as far as Newton’s gravity equation goes, so the figure denotes the Earth and
Moon as points that are orbiting about some point. Let r1 be the distance from the Earth (well,
from the point-mass Earth, i.e. the center of the planet) to this point, and r2 be the distance of
the Moon from that point. The center of the Earth and the center of the Moon are separated by a
distance of d = 384, 000 km.

Let m1 be the mass of the earth, and m2 be that of the moon.

The magnitude of the force between these two is F = Gm1m2

d2
. The moon is orbiting about the

central point at a distance of r2 with some speed v2 so there is a radial acceleration present of

ar = v22/r which requires a force of F = m2v
2
2/r2 and the force providing this is the gravitational

attraction between the Earth and the Moon.

Applying the same argument to the little circular orbit the Earth is making yields a required force

of F = m1v
2
1/r1 .

The force between them is the same, by Newton’s third law, so the right-hand sides of the two
boxed equations must also be equal:

m2
v22
r2

= m1
v21
r1

The speed of something moving in a circle is the circumference of that circle divided by the orbit
period, so v2 = 2πr2/T and v1 = 2πr1/T . Making these substitutions and cancelling common terms
yields the particular simple relationship that: m1r1 = m2r2. (We’ll see this again in later chapters
when we talk about the center of mass of multiple objects and its impact on rotation of extended
objects, not just the point-masses we’re dealing with for now.)

That gives us our second equation since we already have r1 + r2 = d, the known distance between
the (centers of the) earth and moon.

Let’s determine r1, the radius of the Earth’s orbit about this common point. Combining these two
equations yields:

r1 = ( m2

m1+m2
)d. The Earth’s mass is about 81 times that of the moon, so m1 = 81m2 and this

becomes: r1 =
1
82
d = 1

82
× (384, 000 km) = 4683 km.



The radius of the Earth is about 6380 km so the point that both the Earth and Moon are circling
is located about 1/4 of radius of the Earth underground.

This results in the Earth ‘wobbling’ with a roughly 30 day period as it orbits the Sun.

You can apply the same process to other pairs of objects. Consider the Sun and Jupiter, the heaviest
planet in the solar system. The Sun is roughly 1000 times more massive than Jupiter, but we find
that the common point about which both are orbiting is about 800, 000 km out from the center of
the Sun, which is just outside the surface of the Sun.

Observed from another star, the Sun would appear to wobble back and forth with a 12 year period
due to the orbit of Jupiter. This sort of motion is detectable with current technology and is one of
the ways planets have been detected around other stars (numbering in the thousands now...).


