
PH2213 Fox : Lecture 14
Chapter 7 : Work and Energy

This chapter switches gears and introduces a different approach for ‘motion’ problems based on
energy.

Chapters 1 through 6 : micro -management of an object’s motion

•
∑

F⃗ = ma⃗ PLUS (many) equations of motion

• simulations

• computer models

• detailed moment-by-moment trajectories

• movie/videogame ‘frame-by-frame’ scene creation

• ‘simple’ only if forces are constant

Chapters 7, 8 and 9 : macro -management of an object’s motion

• energy approach

• relates initial and final conditions directly

• (can still often use to reverse engineer intermediate details if needed)

• provides method for dealing with non-constant forces

• handle abrupt events (explosions, collisions)



Energy can appear in many forms, and there are often methods for converting one type into another:

Over the next few chapters, we’ll focus on a subset of these called mechanical energy, the first
of which is kinetic energy:

Kinetic Energy

• Object of some mass m travelling at some
speed v

• K = 1
2
mv2

• Metric units (MKS) : kg m2/s2 or Joules (J)

• Metric units (CGS) : g cm2/s2 or ergs

• English: calories : 1 cal = 4.184 J so 1 J =
0.239005736 c

• English: Calories : 1 Cal = 1000 cal =
4184 J

• English: 1 BTU (British Thermal Unit) is
about 1055 J (about 252 cal)

Examples

• 100 kg person walking at 2 m/s : K =
1
2
(100 kg)(2 m/s)2 = 200 J

• 2 g (0.002 kg) bullet at 300 m/s : K =
1
2
(0.002)(300)2 = 180 J

• 1000 kg car at 60 mph (26.82 m/s) : K =
359, 660 J

Other Forms of Energy
chemical 1 snickers candy bar 271 C = 271, 000 c× 4.184 J

1 c
= 1, 130, 000 J

chemical 6 inch Subway club sandwich 1, 600, 000 J (1.6 MJ)
chemical gasoline 47.2 MJ/kg
nuclear U − 235 79, 500, 000 MJ/kg
electrical supercapacitor 1 MJ/kg
electrochemical Lithium-ion battery 1 MJ/kg
electrochemical lead-acid car battery 0.1 MJ/kg
nuclear U-235 79, 500, 000 MJ/kg
E = mc2 anti-matter 90, 000, 000, 000 MJ/kg



A 50 kg crate is being pulled with a force
of F = 100 N at a 37o angle as shown. If
it is initially moving to the right at 1m/s,
how fast will it be moving after displacing
2 m to the right? (Assume no friction
here.)

Let’s do this symbolically and morph the usual Newton+Equations-of-Motion approach into an
energy-based one.

Coordinate system : let’s use a coordinate system with an origin where the crate is initially
located, with +X pointing to the right in the figure, and +Y pointing vertically upward.

Applying Newton’s Laws then, we have
∑

Fx = max so here F cos θ = max which we can rearrange
into:

ax = F cos (θ)/m

The speed of the crate after it’s displaced to the right is related to the initial speed via one of our
equations of motion:

v2 = v2o + 2ax∆x

Substituting in the expression we found for ax, we have:
v2 = v2o + 2(F cos θ

m
)∆x

Multiplying all the terms in this equation by m
2
, and replacing the distance displaced by ∆x = d

we have:
1
2
mv2 = 1

2
mv2o + Fd cos θ

In words: The object’s final kinetic energy is equal to it’s initial kinetic energy plus that term on
the right. The other terms in the equation are energies, so that one must be as well. It represents
the amount of energy the pulling force added to the crate’s kinetic energy as it moved from the
initial to the final position.

That energy added (or removed) by a force acting on an object is called the WORK that force did
on the object, and (in most physics textbooks anyway) is referred to using the symbol W . (There’s
some symbol overload there, since W or w are sometimes also used to represent the weight (a force)
of an object.)

The work done by a force F⃗ on an object as it displaces by some vector displacement
d⃗ isW = Fd cosϕ where ϕ is the angle between the force and the displacement vectors
(basically it’s picking up just the component of the force that is inline with the motion
of the object). Mathematically, we are taking two vectors and creating a scalar using
this special type of multiplication that is called the dot product or scalar product

of the two vectors: A⃗ · B⃗ = |A⃗| |B⃗| cosϕ = AB cosϕ



Scalar (Dot) Product of Two Vectors

The scalar or dot product of two vectors is a
one of several forms of vector multiplication that
turns out to be useful. (We’ll see another, the
cross-product, that gets involved in rotational mo-
tion and torques when we get near the end of the
course.)

The scalar product of two vectors A⃗ and B⃗ is
AB cos θ and can be interpreted as the magnitude
of one vector times the projection of the other vec-
tor onto it. NOTE I usually use ϕ to represent
the angle between the two vectors to differentiate
it from other angles in a problem, where θ might
be used to represent the slope of a ramp for ex-
ample.

The figure shows A⃗ being projected onto B⃗ creating the product (A cos θ)(B) but if we instead

project B⃗ onto A⃗, we end up with (A)(B cos θ) which is the same value, so the dot product is

commutative: A⃗ · B⃗ = B⃗ · A⃗. (We’re used to that with ‘normal’ multiplication since 2× 3 = 3× 2
but there are other forms of vector multiplication that do not commute and we’ll run into one (the
cross product) later in the semester.)

Section 7-2 in the book covers the definition of the dot product and a
couple of examples of using it. See also the homework solutions pdf for
problems 7.18, 7.20 and 7.22 for other examples.

Example : Suppose we have an object moving up an incline, displacing by d⃗ =
(3̂i + 2ĵ) m. (We’re using a coordinate system where X is horizontally to the right
and Y is vertically upward.)
Multiple forces may be acting on this object, but we want to determine the work that
one particular force did. Suppose that force happens to be F⃗ = (−4̂i+ 3ĵ) N .

(a) Compute the work done to the object by this force as it displaced the given
amount.

(b) Use the dot product definition to determine the angle between those two vectors.

(If you sketch this out, this force is actually pulling in a way that will somewhat slow the object
down.)

W = F⃗ · d⃗ = (−4̂i+ 3ĵ) · (3̂i+ 2ĵ)

Expanding this out (the usual FOIL method still works):

W = (−4)(3)̂i · î+ (−4)(2)̂i · ĵ + (3)(3)ĵ · ĵ + (3)(2)ĵ · ĵ.

The scalar parts of the multiplication we can still do, so that leaves us with:

W = −12̂i · î− 8̂i · ĵ + 9ĵ · ĵ + 6ĵ · ĵ.



What do those remaining unit-vector dot products mean now?

If we go back to the basic definition of dot produce: A⃗ · B⃗ = AB cosϕ.

• î · î : the dot product is the magnitude of the first vector times the magnitude of the second
vector, times the cosine of the angle between them.

• These are unit vectors, so |̂i| = 1

• The vectors are both pointing in the same direction, so the angle between them is 0o

• î · î = (1)(1) cos 0o = 1

The same will occur for any unit vectors when we’re taking the dot product of that unit vector with
itself: the dot product of any unit vector with itself is 1.

What if we do the dot product between two different unit vectors (where the unit vectors represent
the coordinate axes like x, y and z)? î, ĵ and k̂ are pointing along the coordinate axes, which are
mutually perpendicular, so the angle ϕ will be 90o in these cases. But cosine of 90 degrees is zero,
so: the dot product of any two DIFFERENT unit vectors is 0.

Now we can go back and finish up our calculation. We ended up with:

W = −12̂i · î− 8̂i · ĵ + 9ĵ · ĵ + 6ĵ · ĵ.

But we can replace all those dot-product pairs now:

W = −12(1)− 8(0) + 9(0) + 6(1) which leads to W = −6 joules.

As the object slid up the incline, this particular force would have removed 6 J of energy from it.

What is the angle between the two vectors here?

We could probably draw this out on some coordinate system and go through a series of trig steps
to determine that, but the dot product gives us a shortcut:

A⃗ · B⃗ = AB cosϕ

Here, our two vectors were F⃗ = −4̂i + 3ĵ (the force in newtons in this example) and d⃗ = 3̂i + 2ĵ
(the displacement in meters) and we know that their dot product was −6.

Using the definition of the dot product, F⃗ · d⃗ = Fd cosϕ where ϕ is the ‘angle between the two
vectors’, which is what we’re trying to determine. We know the left hand side of that equation
is −6. We also know that F = |F⃗ | =

√
(−4)2 + (3)2 = 5 and d = |d⃗| =

√
(3)2 + (2)2 =

√
13 so

F⃗ · d⃗ = Fd cosϕ becomes: −6 = 5
√
13 cosϕ from which cosϕ = −6

5
√
13

= −0.33282... and finally
ϕ = 109.4o.

NOTE: the ‘angle between the vectors’ is always in the range from 0o to 180o, which exactly matches
the angle range your calculator’s inverse cosine function will return.



Work-Kinetic Energy Theorem

We usually have multiple forces acting on an object and each one is potentially adding or removing
energy from the object (‘doing work on the object’). In each case, the work done involves just the
component of the force that’s in the direction of the objects motion so each force is doing work that
involves a dot product between that force and the displacement of the object.

Combining all these works with the object’s original kinetic energy yields what the object’s final
kinetic energy must be:

Kfinal = Kinitial +
∑

Wi

where for each force F⃗i acting on the object we compute the work done by that force by taking the
dot product of that force and the displacement of the object:

Wi = F⃗i · d⃗ = Fid cosϕi

Let’s revisit the crate being pulled, and this time we’ll include friction, with µk = 0.2.

A 50 kg crate is being pulled with a force of F = 100 N at a 37o angle as shown. If it is initially
moving to the right at 1 m/s, how fast will it be moving after displacing 2 m to the right? Assume
the coefficient of kinetic friction between the crate and the floor is µk = 0.2.

What are all the forces acting on the object?

• The pulling force at the angle shown.

• Gravity Fg straight down

• Normal force FN straight up

• Kinetic friction



The object is displacing 2 m to the right here. The book figure uses x⃗, but I’ll call that d⃗ (‘d’ for
‘displacement’).

Compute the work done by each force where W = F⃗ · d⃗ = Fd cosϕ

Remember here that F and d are the magnitudes of the corresponding vectors, so they are always
positive (or zero, but never negative). The sign of the work W is determined by the cosine
term.

• Work done by Fg : this force is acting straight down (the negative Y direction), and the
displacement vector is in the positive X direction, so there’s a 90o angle between those two
vectors. WFg = Fgd cos (90

o) = 0 since the cosine of 90 degrees is zero. Gravity is not doing
any work on the crate (i.e. not adding or removing any energy from it).

• Work done by FN : the normal force is acting straight up (the positive Y direction), and the
displacement vector is in the positive X direction, so there’s a 90o angle between those two
vectors. WFN

= FNd cos (90
o) = 0 since the cosine of 90 degrees is zero. The normal force is

not doing any work on the crate (i.e. not adding or removing any energy from it).

• Work done by the Fpull : WF = F⃗ · d⃗ = Fd cosϕ = (100 N)(2 m) cos (37o) = +159.73 J . This
force did do work on the crate, adding that much energy to it.

• Work done by friction (see below)

Work done by friction : for this one, we’ll have to go back to the previous chapter since fk = µkFN

which means we need to determine the normal force present on the crate.

Wfk = f⃗k · d⃗ = fkd cosϕ where

• fk is the magnitude of the force of friction here so fk = µkFN

• d is the magnitude of the displacement (here d = 2 m)

• ϕ will be the angle between those two vectors. f⃗k is directly to the left and d⃗ is directly to
the right, so ϕ = 180o

• That means that Wfk = fkd cosϕ = (µkFN)(d)(cos 180
o) or Wfk = −µkFNd

What is the normal force here? Looking in the Y direction, we have FN vertically upward, Fg

vertically downward, and we have a Y component of the pulling force upward.∑
Fy = 0 becomes FN −mg + 100 sin (37o) = 0 or FN = mg − 100 sin (37o) = (50)(9.8) − 60.2 =

429.8 N .

Finally then, the work done by friction will be Wfk = −µkFNd = −(0.2)(429.8 N)(2 m) =
−171.92 J .

Finally we can put this all together.

K = Ko +
∑

W = Ko +WFg +WFN
+WF +Wfk = 25 + 0 + 0 + 159.73− 171.92 = 12.81 J .

Converting that back into speed:



K = 1
2
mv2 so here 12.81 = (0.5)(50 kg)(v)2 from which |v| = 0.716 m/s.

Note that the crate is slowing down here.

What if the question asked how fast the crate was moving after displacing 5 m to the
right? (Turns out this is a BAD QUESTION because the crate can’t actually travel that far.)

We don’t have to redo much of the previous work. The work done by gravity and the normal force
are still zero, so we’re left with:

• Work done by the pulling force : WF = F⃗ ·d⃗ = Fd cosϕ = (100N)(5m) cos (37o) = +399.32 J .

• Work done by friction: Wfk = −µkFNd = −(0.2)(429.8 N)(5 m) = −429.8 J .

Our Work-Kinetic Energy equation then becomes:

K = Ko +
∑

W = Ko +WFg +WFN
+WF +Wfk = 25 + 0 + 0 + 399.32− 429.8 = −5.48 J .

BUT K = 1
2
mv2 can never be negative. m is always positive, and v2 will be positive also.

A NEGATIVE kinetic energy is IMPOSSIBLE , so either we did something wrong here (which we

didn’t), or the original problem statement must be wrong. It’s not possible to pull the crate the full
5 meters. Friction is removing energy faster than the pulling force is adding energy, and eventually
the 25 J of kinetic energy we started with will be gone. K = 0 means v = 0, so the crate will come
to a stop.

Any time you work a problem and end up finding a NEGATIVE value for K, there’s a 100% chance
that either the problem is wrong (unlikely with a HW or test problem), or you did something wrong
that lead to that result. Don’t just ignore the sign and take the square root anyway - it’s
a useful RED FLAG that denotes an error to find. (Frequently this happens when students use a
negative value for g, or for F or d in the equation W = Fd cosϕ. The F and d are magnitudes of
those vectors (always positive); the SIGN for the work comes from taking the cosine of the angle ϕ.

Determine how far the crate will move before coming to a stop.

‘Coming to a stop’ means v = 0, so sticking with our energy approach that means our final K = 0,
and now we’re looking for the d where that will happen.

Leaving d as a symbol in our work terms:

• Work done by the pulling force : WF = F⃗ · d⃗ = Fd cosϕ = (100 N)(d) cos (37o) = +79.86d.

• Work done by friction: Wfk = −µkFNd = −(0.2)(429.8 N)(d) = −85.96d.

Our Work-K equation: K = Ko+
∑

W becomes: 0 = 25+0+0+79.86d− 85.96d or 0 = 25− 6.1d
from which d ≈ 4.1 m


