
PH2213 : Examples from Chapter 7 : Work and Kinetic Energy

Key Concepts

In the previous chapters, we analyzed motion using various equations of motion (derived from
calculus under the assumption that the acceleration is constant) and Newton’s Laws. Some of these
could be difficult to solve, and often involved careful use of concepts from trigonometry to pull out
the needed vector components. They were also limited to constant forces and accelerations.

In this chapter, we morph those earlier equations into a different form, introducing the concept of
work and potential energy, which are scalars not vectors, and which allow us to solve many of the
same problems more easily, and usually with somewhat less trig. The methods in this chapter also
allow us to solve some problems where the acceleration is not constant (such as the pendulum, for
example).

Key Equations

The work done by a force F⃗ as an object moves from one location to another (represented by a

displacement vector of d⃗) is defined to be W = F⃗ · d⃗ . Work can be either positive or negative,
depending on the angle between the force and displacement vectors. One definition of dot product
that is frequently used in work calculations: W = |F | |d| cosϕ where ϕ is the angle between the
force and displacement.

The kinetic energy of an object of mass m moving at a speed v is K = 1
2
mv2

Work-Energy Theorem : K2 = K1 +
∑

Wi : the initial kinetic energy of an object, plus all the
works done on the object by all the forces present, gives us the final kinetic energy of the object.

Varying forces : if a force is present that depends on the position (like a spring), we can still com-

pute the work done by that force as an object moves from position a to position b: W =
∫ b
a F (x)dx

for example.

That is basically the area under the F (x) vs x curve, which you can still compute without knowing
calculus in the case of simple forces (such as springs).

Common Errors

• trig : getting angles for the dot products involved in F⃗ · d⃗ = Fd cosϕ. ϕ is the angle between
the directions of the two vectors involved; F and d are the magnitudes of the two vectors
(and are therefore positive). Any overall sign comes from the cosϕ part of that expression.

• work can be negative (work done by kinetic friction is always negative)

• force and work are connected but separate (not even the same units). Force is a vector (and
has components); work is a scalar (no components)

• Repeating the previous one: energy is a scalar, not a vector. Work and kinetic energy do not
themselves have components.



1. Sliding Block : No friction

Suppose we have a 100 kg crate being moved across a frictionless floor. It is initially moving
to the right at 2 m/s and a person behind it is pushing horizontally with a constant force of
80 N . How fast will the crate be moving after travelling a distance of 10 m?

The block is moving horizontally to the right, so let’s call that our +X coordinate direction.
The +Y axis will be pointing vertically upward.

This is fairly easy to do using Newton’s methods combined with equations of motions from
earlier chapters, but here we’ll use work and energy, which says that K2 = K1 +

∑
W : if we

can account for all the works done on the object, we can add those to its initial kinetic energy
to find its final kinetic energy (from which we can find the speed since K = 1

2
mv2).

What are all the forces present on the block?

• We have the person’s pushing force of 80 N to the
right

• gravity (the weight of the block) downward

• a normal force (keeping the block from passing
through the floor)

• friction (well, not yet - this example has µk = 0)

The work done by a force F⃗ as an object displaces by d⃗ is W = F⃗ · d⃗.
Here, the box is displacing to the right, horizontally. The force of gravity is vertically down-
ward, and the normal force is perpendicular to the surface, so it is vertically upward here.
Both of those forces are perpendicular to the displacement vector d⃗ so neither of them does
any work on the crate.

The person’s force is 80 N to the right, as the block displaces 10 m to the right: the person
did work of W = F⃗ · d⃗ = (80 N)(10 m) cosϕ where ϕ is the angle between the vector force
and the vector displacement. Here, those two vectors are in the same direction (both pointing
exactly to the right) so ϕ = 0 and cos 0 = 1.0 so the work done is W = 800 J .

(If we had friction, which we’ll add in the next example, we’d have to compute how much
work it did, but µk = 0 at this point, so we’re done.)

The initial and final kinetic energies are related by: K2 = K1 +
∑

W . The initial kinetic
energy was K1 = 1

2
mv2 = 1

2
(100 kg)(2 m/s)2 = 200 J so the final kinetic energy will be

K2 = 200J + 800J = 1000J .

K = 1
2
mv2 so we can relate that to the speed of the block at this point: 1000J = 1

2
(100 kg)v2

or 1000 = 50v2 and finally v = 4.47 m/s.



2. Sliding Block : With Friction

(Refer to the figure in the previous problem.)

Here we have the identical problem, but we’ll add friction between the block and the floor,
with µk = 0.10.

What changes? Our work-energy equation remains the same, and the person is still doing the
same amount of work as before, but now we have an additional term in our

∑
W calculation:

the work that friction did on the block as it underwent the given displacement.

The magnitude of the frictional force is given by fk = µkn, and its direction is always to
oppose motion, so the vector frictional force here will be acting to the left as the box slides
to the right. That means that the work done by friction, W = f⃗k · d⃗ will be W = fkd cosϕ
and now the angle between the two vectors is 180o, so the cosine term becomes cos 180o = −1.
The work done by friction here is W = −fkd. We have the displacement (10 m) but we need
to find the magnitude of the frictional force, which means we’ll need to find the normal force.∑

Fy = 0 since the box isn’t accelerating (or moving at all) in the Y direction. Looking at
all the Y components of the forces present: friction is entirely to the left, the person’s force is
entirely to the right, so neither of those have any Y component. All we have is n upward and
mg downward, so

∑
Fy = 0 becomes n−mg = 0 or n = mg = (100 kg)(9.81 m/s2) = 981 N .

The magnitude of the force of friction then is fk = µkn = (0.10)(981 N) = 98.1 N . The work
that friction did is W = −fkd = −(98.1 N)(10 m) = −981 J .

Note : the frictional force is always in the direction opposite the motion, so always does
negative work on an object, slowing it down.

Our overall work-energy equation then is: K2 = K1 +
∑

W . We started with 200 J of
kinetic energy (see previous problem), and the person did work of +800 J and we just found
that friction did work of −981 J so substituting in these values: K2 = (200 J) + (800 J) +
(−981 J) = 19 J .

Converting this kinetic energy into the speed of the crate: K = 1
2
mv2 so 19 = 1

2
(100)v2 or

finally v = 0.62 m/s

Warning : Kinetic Energy can never be negative, since it is defined as K = 1
2
mv2. In this

problem, note that friction removed more energy than the person put into the block. If the
block had not already been moving (with that initial kinetic energy of 200 J) we would have
ended up with a negative value for K2, which is not possible. This means one of two things:
either the initial statement of the problem is wrong (the block cannot have moved the 10
meters that was claimed), or somewhere along the line you made a math mistake. Never
ignore this type of situation. If you end up with a negative kinetic energy, something is wrong
somewhere!



3. Sliding Block : Stopping Distance

Let’s change things up a bit. Here, let’s say we have a 100 kg block moving to the right at
2.0 m/s on a floor with µk = 0.1 and we do not push it. Basically we have the same figure
as in the previous two examples, except we have removed the person pushing on the block.

We want to find how far it will slide before coming to a stop. We have an initial kinetic energy
of K1 =

1
2
mv2 = 1

2
(100)(2)2 = 200 J . Friction will be doing negative work as the block slides,

removing energy from it. Eventually it comes to a stop, but that means we’re looking for the
point where K2 = 0. (Stopped = not moving = no kinetic energy.)

In the previous example, we saw that the work done by friction is W = −fkd and we found
that the force of friction was fk = 98.1 N .

So work-energy tells us that K2 = K1 +
∑

W and the only force doing work here is friction,
so this becomes: 0 = (200 J) + (−fkd) or fkd = 200 or (98.1)(d) = 200 and finally d =
200/98.1 = 2.04 m



4. Object Thrown at an Angle

From the roof of Hilbun (15 m above the ground below), we throw a ball with an initial speed
of 20 m/s at an angle of 30o above the horizontal.
(a) How fast is it moving at the instant just before it hits the ground?
(b) Can we say anything about the angle it hits the ground with?
(c) How far did it travel laterally?

We did this problem earlier using 2D equations of motion, which got pretty long and involved
solving a quadratic equation. We can bypass all those intermediate steps using work-energy
(and in the next chapter we’ll see how we can make it even simpler using conservation of
energy).

Let’s label position 0 as the initial point when we’ve
tossed the ball into the air, starting it’s trajectory, and
position 1 is the instant just before it hits the ground.
Then K1 = K0 +

∑
W . The only force doing work here

is gravity, Fg = mg acting straight downward. The over-
all displacement is from point 0 to point 1 and the work
done by gravity will be F⃗g · d⃗ which is |Fg| |d| cosϕ where
ϕ is the angle between those two vectors. Looking at the
two figures on the bottom, we see that we can collect
the d cosϕ terms together and note that d cosϕ = h, the
height of the building (15 m). We can write the work
done by gravity here then as just Wg = (mg)(h).

Our overall work-energy equation K1 = K0 +
∑

W then becomes: 1
2
mv21 = 1

2
mv2o +mgh. The

mass cancels out, leaving us with 1
2
v21 = 1

2
v2o + gh or multiplying the whole equation by ‘2’:

v21 = v20 + 2gh. (We’ve seen that before...)

With the numbers here, v21 = (20)2+(2)(9.81)(15) = 400+294.3 = 694.3 or |v1| = 26.35 m/s.
This gives us the speed of the ball when it hits the ground. It doesn’t tell us anything about
the direction though.

Determining The Direction

We do know from earlier chapters that vx will remain constant throughout the motion since
there isn’t any acceleration in the X direction. We can find that value: vox = vo cos 30 =
(20 m/s)(0.866) = 17.32 m/s.

Just before it hits the ground, the ball has some velocity vector that has an overall magnitude
of 26.35m/s (what we found earlier) but that vector has X and Y components, and the overall
speed and the components are related: v2 = v2x + v2y. We just found the X component to be
17.32 m/s, so we can find the Y component: v2x + v2y = (26.35)2 or (17.32)2 + v2y = (26.35)2.
Solving this, we find that v2y = 394.34 or |vy| = 19.86 m/s. Since that equation involved the
square of vy, we don’t really know it’s sign but we do know the ball will be falling downward,
so we can assume that vy = −19.86 m/s instead of the positive option.

This new information let’s us determine how long the ball is in the air. If we look at just
the Y direction for a moment, vy = voy + ayt. The initial velocity in the Y direction is
voy = vo sin 30 = (20 m/s)(0.500) = 10.00 m/s. The final velocity (the instant before hitting
the ground) was vy = −19.86 m/s, and the acceleration is ay = −9.81 m/s2, so vy = voy + ayt
becomes (−19.86) = (10.00)− 9.81(t) from which t = 3.04 s.



At the ground then, the ball is moving at an angle given by tan θ = vy/vx = −19.86/17.32 or
ϕ = −48.9o.

How far did the ball travel laterally? x = xo + voxt +
1
2
axt

2 but vox = 17.32 m/s and
ax = 0 and we now know that the ball hits the ground at t = 3.04 s, so this occurs at
x = 0 + (17.32 m/s)(3.04 s) + 0 = 52.7 m.

Discussion on Methods

When we did this problem earlier, using 2D equations of motion directly, we computed the
time to hit the ground first, using the Y equation of motion (which ended up requiring us to
solve a quadratic equation with two solutions, so we had to think about which was the right
one). Once we determined the time, we could find the X and Y components of the velocity,
and the X position where it hit the ground. So basically we got everything in minute detail
about the motion of the object.

If all we care about is the speed with which the ball hits the ground, the methods of this chapter
(work and energy) allowed us to bypass all those intermediate steps and jump straight to the
final speed of the object.

Once we have that information, if we had to go back and find some of the details, we can do
so, and that’s what we did in this problem. It’s certainly not the most direct way to get that
information, but at least it’s an option.



5. Skier on a slope with friction An 80 kg skier at the
top of a 100 meter long, 30o slope, is initially moving
down the slope at a speed of 3.0 m/s. How fast is the
skier moving when they reach the bottom of this slope?
The coefficient of kinetic friction is µk = 0.06.

This problem is taken from the sample problems for test 2, where we used Newton’s Laws
and equations of motion to solve for the speed at the bottom of the ramp, so you may want
to refer to that example. We used g = 9.8 m/s2 in that version of the solution, so let’s do
that again here so we should get the identical answer.

Here, we will solve the problem using the work-energy approach, K2 = K1 +
∑

W . We know
the initial speed of the skier at the top of the slope, v1 = 3 m/s and we know their mass, so
we can find their initial kinetic energy: K1 =

1
2
mv2 = 1

2
(80 kg)(3 m/s)2 = 360 J .

We need to compute the work done by all the forces present in the problem. First, we annotate
the figure showing all the forces present and their directions:

We have the force of gravity (the weight of the skier)
acting straight down, we have friction acting opposite to
the motion (so in this case, the vector f⃗k will be point-
ing up-slope), and we have some normal force preventing
the skier from falling through the ground. fk = µkn
so we need to find the magnitude of the normal force.
Looking at the figure, we see that in our rotated coordi-
nates,

∑
Fy = 0. n is already in the +Y direction, but

the weight mg is not, so we need to resolve that vector
into components. From the figure, we see that we have
mg cos 30o acting in the negative Y direction.∑

Fy = 0 becomes n − mg cos 30o = 0 or n = mg cos 30o = (80 kg)(9.8 m/s2)(0.8660) =
678.96 N . The force of friction is fk = µkn = (0.06)(678.96 N) = 40.74 N .

Let’s compute the work done by each of the forces acting on the skier:

(a) normal force : n is perpendicular to the displacement, so does no work

(b) friction : fk is pointing upslope, and the displacement is 100 m downslope, so the angle

between those two vectors is 180o. Wf = f⃗k · d⃗ = (40.74 N)(100 m) cos 180o = −4074 J

(c) gravity : mg⃗ is pointing straight down, and the displacement is pointing along the slope.
The angle between those two vectors is 60o:
Wg = F⃗g · d⃗ = (mg)(d) cos 60o = (80 kg)(9.8 m/s2)(100 m)(0.5) = 39, 200 J .∑

W = 0 + (−4074 J) + (39, 200 J) = 35, 126 J .

Finally K2 = K1 +
∑

W becomes K2 = (360 J) + (35, 126 J) = 35, 486 J . We can convert
this into the speed of the skier from K2 = 1

2
mv22 or 35, 486 = 40v22 or v22 = 887.15 and

v2 = 29.79 m/s.



6. Atwood Machine
A system of two paint buckets connected by a lightweight rope
is released from rest with the 12 kg bucket initially 2.00 m above
the floor. Find the speed of the buckets the instant before the
12 kg one hits the floor. (Ignore friction and the mass of the
pulley.)

This is a problem we worked using Newton’s Laws earlier (see
the sample problems for test 2). We set up coordinates for each
object, looked at the forces present on each, and were able to
derive the acceleration of the blocks, from which we could find
the speed at which the 12 kg block hits the floor (4.43 m/s).

Here, we will use work-energy to find a solution. Let’s
label things with ‘A‘ representing the 4 kg block, and ‘B’
will represent quantities associated with the 12 kg block.
We’ll use the label ‘1’ to represent the initial conditions
(the lighter block on the floor, the heavier block tem-
porarily up in the air) and ‘2’ will be the conditions at
the instant just before the heavy block hits the floor.

Work-energy for block A: KA2 = KA1 +
∑

W . Initially, this block is not moving, so KA1 = 0.
This block will be moving upward a distance of 2 m. What work is being done on this block
over that displacement?

• Gravity: F⃗g is acting downward while the block displaces upward so in W = F⃗ · d⃗ the
angle between these two vectors is 180o so gravity did work of W = (mg)(d)(−1) =
−(4 kg)(9.81 m/s2)(2 m) = −78.48 J .

• Tension: the tension is acting upward as the block displaces upward, so the angle
between the force and displacement vectors here is zero. The work that the tension does
on this block then is W = F⃗ · d⃗ = (T )(d) cos 0 = Td.

Overall then, our work-energy equation for block A becomes: KA2 = 0− 78.48 + Td

Work energy for block B: Repeat the arguments from above, but block B is displacing down-
ward. Thus gravity (also aimed down) is doing positive work, while the tension is do-

ing negative work. The work done by gravity will be W = F⃗g · d⃗ = (mg)(d) cos 0 =
mgd = (12 kg)(9.81 m/s2)(2.0 m) = 235.44 J . The work done by tension will be W =

(T )(d) cos 180 = −Td. Overall our work-energy equation for block B becomes: KB2 = 0 + 235.44− Td

Adding the two boxed work-energy equations together lets us cancel out the terms involving
the tension, leaving us with:

KA2 +KB2 = −78.48 + Td+ 235.44− Td = 156.96.

Since the rope connecting the two blocks does not stretch, both blocks will be moving at the
same speed v, so: KA2 =

1
2
MAv

2 = 1
2
(4)v2 = 2v2 and KB2 =

1
2
MBv

2 = 1
2
(12)v2 = 6v2.

Making those substitutions: (2v2) + (6v2) = 156.96 or 8v2 = 156.96 which leads to v =
4.43 m/s.



7. Pendulum : Symbolic

We form a pendulum by hanging an object
of mass m from a string of length L that is
attached to the ceiling. We pull the object
out by an initial angle of θ and let it go
(initially at rest). How fast will the object
be moving as it passes through the lowest
point on its path?

We’ll do this entirely symbolically, then in
the next example we will apply these re-
sults to an example of a swing-set and look
at the tension in the rope at the bottom of
the swing.

As the mass swings, we have gravity downward and tension in the rope always acting towards
the pivot, so it’s direction keeps changing, which means that the forces acting here are not
constant, and therefore acceleration isn’t constant and we can’t directly use Newton’s Laws
or any of our equations of motion here. This is an example of a type of problem that we can
still solve using work-energy (or later, conservation of energy).

Let’s say that position 1 is the initial location of the mass when it’s been pulled out θ from
the vertical, and position 2 will be as it passes through the lowest point (the bottom of the
circle).

K2 = K1 +
∑

W . The initial kinetic energy is K1 = 0 since it isn’t moving there. At the
bottom of the swing, K2 =

1
2
mv2 where v will be the speed the mass is moving at that point.

How about the works being done here? Tension is always directed towards the center of the
circle, so millimeter by millimeter as the object moves along the circle, the tension is always
perpendicular to each little ds of displacement. Tension thus is doing no work on the mass.
Gravity is doing work here. In the lower left figure, we’ve labelled the force of gravity and the
displacement. The work that gravity does will be W = F⃗g · d⃗ = (mg)(d) cosϕ. Now ϕ is the
angle between the two vectors. Looking at the lower right figure, we see that d cosϕ is just
the change is height between the initial and final positions. But on the lower left figure we
see that (L− h) = L cos θ so rearranging this we can find that h = L− L cos θ.

Putting this together: K2 = K1 +
∑

W becomes: 1
2
mv2 = 0 +mgh = mgL(1− cos θ).

Both sides of this equation involve m, so we can divide the entire equation by m and remove
it:
1
2
v2 = gL(1− cos θ). Multiplying both sides of the equation by 2 and then taking the square

root:

v =
√
2gL(1− cos θ)



8. Pendulum and Tension

In an episode of Mythbusters, the goal was to get a swing going fast enough that it made a
complete 360o loop. Before they even got this far, the chains holding the swing broke. Why?

Refer to the previous page, where we found that if we start off a swing at rest at some angle
θ from the vertical, the speed of the swing as it passes through the lowest point will be

v =
√
2gL(1− cos θ).

The swing is moving in a circle, which means there is a centripetal acceleration of ac = v2/r.
Substituting in the expression we just calculated for v and noting that here r = L we have:

ac = v2/r = 2gL(1−cos θ)
L

or ac = 2g(1− cos θ)

If there is an acceleration, there must be a force providing it. At the very bottom of the circle,
we have two forces acting on the swing: it’s weight downward, and the tension in the cable
upward. Newton’s laws tell us that

∑
F = ma so here: −mg+T = ma or T = mg+ma. We

just found what the acceleration was, so finally:

T = mg +m2g(1− cos θ)). We can rearrange this a bit to result in:

T = mg(1 + 2(1− cos θ) or finally: T = mg(3− 2 cos θ)

In the limit of θ = 0, which means the swing is starting off sitting at the bottom already
and therefore won’t be going anywhere, we have T = mg(3− 2) = mg which is just what we
expect: the tension in the cable is just balancing out the weight of the swing.

Suppose we start the swing out at a 90o angle though? In that case cos 90 = 0 so the tension
at the bottom of the arc will be T = mg(3− cos 90) = 3mg. That means the tension will be
three times higher than the not-swinging-at-all case.

If we want the swing to make a complete 360 deg circle, it has to make it all the way to the
top of the circle. If we say it just barely makes it to the top then we could think of this as a
starting position of θ = 180o. In this case, cos 180 = −1 and the tension at the bottom of the
swing becomes T = mg(3− 2(−1))) = 5mg or five times as much tension as the rope handles
when the person it just sitting at rest on the swing.

(We looked at this problem earlier with Newton’s Laws and found that the swing actually
can’t ‘just barely’ make it around the top - it has to be moving at the top with a speed high
enough to prevent the tension in the chain/wire/rope from dropping below zero. We’ll revisit
this in more detail in chapter 8.)



Springs (1) Suppose I have an uncompressed spring with a spring constant of k = 100 N/m.

(a) How much work do I have to do in order to push the spring in by 10 cm?

Let’s set up our coordinates so that the +X direction is the direction we have to push in order
to compress the spring. Then the spring will exert a force back against me of Fs = −kx and
the force that I have to exert then will be Fpush = +kx. The work that this pushing force
does in compressing the spring from x = 0 so x = 0.1 m will be:

Wpush =
∫
Fpushdx =

∫ 0.1
0.0 kxdx = 1

2
kx2|0.10.0 =

1
2
(100)(0.1)2 − 0 = 0.5 J .

(b) At this moment (the spring compressed by 10 cm), how much force am I exerting?

Fpush = +kx = (100 N/m)(0.1 m) = 10 N

Springs (2) Suppose I have a horizontal uncompressed spring with a spring constant of
k = 100 N/m. A 2 kg block initially moving at 3 m/s encounters this spring and compresses
it until the block comes to a stop. (Assume we don’t have any friction, and the floor is
horizontal and flat.)

(a) How far in does the spring compress?

From work and kinetic energy,K2 = K1+
∑

W . Let position 1 be the point where the block has
just started touching the spring, and position 2 be the point where the spring has compressed
some amount d from its rest length. Then 0 = 1

2
mv2o +Wspring +Wgravity +Wnormal+ · · ·. The

block is moving horizontally, and gravity and the normal force are vertical here, so those do
no work. We don’t have any friction, so it’s not doing any work either. Only the spring is
doing work on the box.

Wspring =
∫ d
0 Fspringdx =

∫ d
0 (−kx)dx = −1

2
kd2

Putting this into our work-energy equation:

0 = 1
2
mv2o − 1

2
kd2 or rearranging terms and multiplying by 2: kd2 = mv2o . Substituting in

what we know:

(100)(d)2 = (2)(3)2 from which d2 = 0.18 or |d| = 0.4243 m. The spring is either compressed
or extended by 42 cm: both of those are mathematically right, but physically we know the
spring is being compressed in this event.

(b) At the instant where the spring has brought the block to a stop, how much force is the
spring exerting on the block?

Fspring = −kx = −(100 N/m)(0.4243 m) = −42.43 N : i.e. it’s pushing outward on the block
with 42.43 N of force. That means that at this instant, the block is feeling an acceleration of
F = ma or a = F/m = (−42.43)/(2) = −21.2 m/s2. It may be momentarily at rest, but it
has an acceleration of 21.2 m/s2 pushing away from the spring and it will start moving back
in the direction it came from.

(c) How fast will the block be moving when it ‘bounces’ off the spring?

Let position 2 be the point where the block has encountered the spring and come to a stop (so
K2 = 0), and position 3 be the point where the block has bounced back and is no longer in
contact with the spring. K3 = K2+

∑
W . As in the previous part, the only force doing work on

the block here is the spring. It’s moving from x = 0.4243 m to x = 0 so that changes the limits
of integration: K3 = 0+

∫ 0
0.4243(−kxdx) or 1

2
mv2 = −1

2
kx2|00.4243 = −1

2
(100)x2|00.4243 = +9.00 J .

So 1
2
(2 kg)(v)2 = 9.00 or v2 = 9 from which |v| = 3.0 m/s. This just tells us the speed, not

the direction, but we know it’s flying back away from the spring, so technically v = −3.0 m/s.



HW Problem 7.84 : What should be the spring constant k of a spring designed to bring
a 1300 kg car to rest from a speed of 90 km/h so that the occupants undergo a maximum
acceleration of 5g′s?

We have the car initially moving at the given speed when it first touches the spring. The
spring now does negative work on the car, bringing it to a stop over some distance d.

The speed is not given in standard metric units, so we’ll need to convert that first: (90 km/hr)×
1 hr
3600 s

× 1000 m
1 km

= 25 m/s

The work done by a spring on the car is Ws = −1
2
kd2, so our work-energy equation K2 =

K1 +
∑

W becomes 0 = 1
2
mv2 − 1

2
kd2 or kd2 = mv2 = (1300 kg)(25 m/s)2 = 812, 500.

Well that’s fine but we have two unknowns still: the spring constant k and the amount the
spring has to compress d.

WRONG SOLUTION : We can determine d though: we desire that the car drop from
25 m/s to 0 m/s with an acceleration of 5 g’s or a = −49 m/s2.

Using our v2 equation from earlier: v2 = v2o + 2ad so (0)2 = (25)2 + (2)(−49)(d) which leads
to d = 6.38 m. (That’s about 20 feet, so this has to be a pretty long spring...)

kd2 = 812500 so (k)(6.38)2 = 812500 or k = 19, 976 N/m (or to two significant figures,
k = 20, 000 N/m).

What was wrong with this? Unfortunately, the force the spring is exerting on the car is
not constant so the acceleration isn’t constant either and we can’t use our v2 equation. When
the car has just started touching the spring, there is no force. The more the car compresses
the spring, the stronger the force is that the spring exerts on it: F = −kx. The spring force
keeps increasing the more the spring gets compressed. At the point where the car has come to
a stop, the spring is compressed an amount d which means the force it is exerting is |F | = kd
which means that right at this instant, the car has an acceleration of magnitude F = ma or
kd = ma. The car may not be moving at this instant, but its acceleration has reached its
maximum value and it’s right at this point where we want to reach that limit of a = 5g!

CORRECT SOLUTION : At the point where the car has compressed the spring an amount
d and has (momentarily) come to a stop, the force on the car is Fs = kd and F = ma so:
kd = ma = (1300 kg)(5× 9.8 m/s2) = 63, 700 N .

We have two equations now. Conservation of energy earlier gave us: kd2 = 812500 and now
we know that kd = 63700 so if we divide the first equation by the second: kd2

kd
= 812500

63700
or

d = 12.76 m. Since kd = 63700, then (k)(12.76) = 63700 or k = 4994 N/m. (Rounded to 2
significant figures, k = 5000 N/m.)

What happens to the car now? At this point, we have the car sitting against the compressed
spring, so the spring will exert a force of Fs = −kx = (−5000)(12.76) = −63700 N pushing
the car away from the spring. At this instant, the car is feeling an acceleration of F = ma
or a = F/m = (−63700)/(1300) = −49 m/s2 (5g’s again, but in the other direction). Once
the car leaves contact with the spring, all the work the car did compressing the spring will
be returned to it and the car essentially flies away from the spring with the same 90 km/hr
speed it originally had, only now it’s moving backwards back out onto the road. Doesn’t seem
like a very good idea...


