
PH2213 Fox : Lecture 20
Chapter 9 : Linear Momentum

Real Version of Newton’s Laws∑
F⃗ = dp⃗

dt
where p⃗ = mv⃗

p⃗ = mv⃗ is called the momentum of an object, and has units of kg m/s2 (there’s no special symbol
or name for that).

If the mass is constant, d(mv⃗)/dt = mdv⃗/dt = ma⃗ so this ‘real’ version reduces to what we’ve been
using so far, as long as the mass is constant.

On the other hand, this ‘real’ version of Newton’s Laws also handles cases where the mass of the
object isn’t constant. Examples are rockets, where most of the mass of the rocket is actually it’s
fuel, which is being consumed while the rocket engine is running. It also handles things like an open
crate traveling along a conveyor as items are being added to it (thus increasing it’s mass).

Implications

• F⃗avg =
∆p⃗
∆t

If we see an object change its momentum over some interval ∆t, we can determine the average
force that must have been acting on it during that interval.

• Rearranging: ∆p⃗ =
∫
F⃗ (t)dt which we can write as

v(t) = vo +
1
m

∫
F⃗ (t)dt

giving us a way to handle time-varying forces

• Conservation of momentum during interactions (see next page)

We will find, as we work through the examples, that mechanical energy, our particular subset of
energies in the form of (K + Ug + Us), is usually NOT conserved during collisions.

We will also find that the forces involved during the brief time intervals involved in most collisions
are tiny compared to the force of the collision itself, so we can usually ignore any other forces acting
on the object(s) during that tiny time interval.



Conservation of Momentum

Consider two objects that are interacting via some force
(electrical, gravitational, elastic, contact FN , etc...)

The force that A exerts on B causes B’s acceleration:
F⃗A on B = mBa⃗B = mB

dv⃗B
dt

The force that B exerts on A causes A’s acceleration:
F⃗B on A = mAa⃗A = mA

dv⃗A
dt

BUT Newton’s third law: F⃗B on A = −F⃗A on B

Implies: mB
dv⃗B
dt

= −mA
dv⃗A
dt

Rearranging: mA
dv⃗A
dt

+mB
dv⃗B
dt

= 0

Or in terms of momentum p⃗ = mv⃗ :

dp⃗A/dt+ dp⃗B/dt = 0 or d
dt
(p⃗A + p⃗B) = 0 or p⃗A + p⃗B = constant

We only considered two interacting objects here, but this idea holds in general for any number of
objects that are interacting with one another.

When objects interact, the total momentum of the system
remains constant.

The total momentum
∑

p⃗ before, during, and after the collision remains the same, unless some
other force comes into the picture to change it.

Note: this book uses a capital letter P to represent the total momentum P⃗ =
∑

p⃗i of a collection
of interacting objects. I tend to avoid it since too many people confuse it with power, which also
uses a capital P.



Example: 1-D Collision

A 10, 000 kg railroad car moving down the track at
24 m/s collides with a 15, 000 kg car that is initially
at rest.

• If the cars lock together, what is their common speed after the collision?

• Look at the mechanical energy before and after the collision. Is it conserved?

• A high speed video of this collision shows that the interaction took 20 ms. What force did A
exert on B? B on A?

(a) Common speed after collision :

Momentum is conserved as a vector, but here we’re starting off with momentum only in the X
direction (horizontal direction) so let’s look at just that direction:

Before the collision, we have a 10, 000 kg object moving at 24 m/s in the +X direction, and another
10, 000 kg object at rest, so (

∑
p)before =

∑
(mivi) = (10000)(24) + (15000)(0) = 240000 kg m/s.

(Luckily, although momentum and collisions is an important situation, there aren’t any new unit
symbols that come into play here. The units of momentum are just mass times velocity or kg m/s.)

Right after the collision, the two objects are connected and are moving at the same velocity, so
(
∑

p)after =
∑

(mivi) = (10000)(v) + (15000)(v) = 25000v

Conservation of momentum then: (
∑

p)after = (
∑

p)before so: 25000v = 240000 or v = 9.6 m/s.
The two railcars move off together at 9.6 m/s to the right after the collision.

(b) Mechanical Energy before and after collision :

Nothing is changing height here, and we don’t have any springs, so we can ignore the Ug and Us

terms in E and just focus on the kinetic energies before and after.

Before: 10, 000 kg object moving at 24 m/s : K = 1
2
mv2 = 2, 880, 000 J .

After: 10, 000 kg object moving at 9.6 m/s and the 15, 000 kg object also moving at 9.6 m/s :
K = 1

2
(10000)(9.6)2 + 1

2
(15000)(9.6)2 = 1, 152, 000 J .

Notice that more than half of the mechanical energy of these two objects ‘vanished’ as a result
of the collision. Energy overall will be conserved, but apparently over half the energy must have
gone into ‘other work’ (friction, heat, deformation or destruction of objects, and so on). 24 m/s is
about 54 miles/hr and there’s likely be quite a bit of destruction involved with a 10, 000 kg railcar
traveling that fast plowing into another railcar at rest...

continued...



(c) Forces involved in the collision : Let’s focus on the railcar that was initially at rest.
Initially it has a momentum of p = mv = 0, but right after the collision it has a momentum
of p = mv = (15000)(9.6) = 144, 000 kg m/s. The force on that railcar can be estimated via
Favg =

∆p
∆t

=
pafter−pbefore

∆t
= 144000−0

0.02
= +7, 200, 000 N . (Note we need everything in standard units:

kg, m, ¡b¿seconds¡/b¿, etc so the 20 ms needed to be converted into 0.02 s.)

That railcar ‘felt’ a force of 7.2 million Newtons to the right, causing it to accelerate from rest to
9.6 m/s in 0.02 s (for an acceleration of a = +480 m/s2 or about 49 g’s).

Let’s look at the railcar on the left now. Initially it had a momentum of pbefore = mv =
(10000)(24) = 240000 kg m/s. After the collision, it has a momentum of pafter = mv = (10000)(9.6) =
96000 kg m/s.

Favg =
∆p
∆t

=
pafter−pbefore

∆t
= 96000−240000

0.02
= −7, 200, 000 N .

The left railcar ‘felt’ a force of 7.2 million Newtons to the left, causing it to slow down from 24 m/s
to 9.6 m/s in 0.02 s (for an acceleration of a = −720 m/s2 or about -73 g’s).

• The cars are exerting the same force on each other - this is an interaction force - so
the magnitude of the force has to be the same each way, it’s just in the opposite direction on
each object. (Newton’s third law...)

• The accelerations each object felt are not the same though since a = F/m depends
on the mass of each object.



Example: Bouncing Ball

Suppose a 0.1 kg ball is dropped from a height of 1 me-
ter. It lands on a hard, horizontal table and bounces
back up to a height of 80 cm. How much force did the
table exert on the ball if the two were in contact for
∆t = 0.001 s? How much energy was lost in the colli-
sion? (What fraction of the initial energy was lost?)

The ball starts with some initial Ug = mgh of gravitational potential energy, which is converted
into K = 1

2
mv2 of kinetic energy as it falls down towards the table. Once bouncing back up, that

kinetic energy gets converted back into potential energy, but we see here that the ball doesn’t make
it all the way back up: it must have lost some (mechnical) energy during it’s collision with the
table.

The figure on the right shows how balls of various types bounce. A ping-pong ball will apparently
lose about 85% of it’s initial energy during a bounce. A basketball loses about half it’s energy when
it interacts with the floor. The one that comes closest to retaining all it’s energy is the steel ball
bearing bouncing off a heavy steel plate.

Initial Drop Phase : Ball starts at rest at a height of 1 meter above the table. How fast will it
be moving when it hits the table?

Lots of options here. Sticking with energy: (K + Ug + Us)b = (K + Ug + Us)a +Wother, where (a)
labels the initial location and (b) denotes the point when the ball it just about to hit the table.

Here then: 1
2
Mv2 + 0 + 0 = 0 +Mgh+ 0 + 0 or after some algebra: v =

√
2gh.

So: if we release the ball 1 meter above the table, it will be traveling downward at v =
√
(2)(9.8)(1) =

4.4272 m/s the instant just before it collides with the table.

Upward Phase : Once the ball bounces back up, it’s moving upward at some velocity so has some
initial kinetic energy, which is converted into Ug until the ball finally comes to a stop 80 cm above
the table. Using the same CoE process, that means the ball must have been moving upward at
v =

√
(2)(9.8)(9.8) = 3.9598 m/s at the instant just after its collision with the table.

Momentum is a vector, but the ball is traveling vertically here so let’s use a coordinate system with
+Y upward.
The Y component of the collision force will be:

Favg =
∆p
∆t

=
pafter−pbefore

∆t

Here then: Favg =
(0.1 kg)(3.9598 m/s)−(0.1 kg)(−4.4272 m/s)

0.001 s
= 838.7 N .

(Note we’re dealing with vectors here, so had to use the correct signs for each velocity.)

Compare that to the force of gravity acting on the ball: Fg = mg = (0.1 kg)(9.8 m/s2) = 0.98 N .
The ‘collision force’ (basically the contact or normal force between the ball and the table) is almost
a thousand times stronger. (We’ll see this routinely in our collision examples: the force involved
in the collision usually overwhelms all other forces that may be acting on the objects.)



Example: 1-D Collision

A 5 gram bullet traveling (horizontally) at 300 m/s
strikes a 2 kg block of wood sitting on a frictionless
surface, initially at rest. The bullet embeds itself in
the wood.

• How fast will the (combined) object be moving immediately after this collision?

• How much energy was lost in the collision?

• If the collision took ∆t = 0.1 ms = 1× 10−4 s, what force was involved?

• Compare that force to other forces present in the problem (gravity, FN , and static friction,
assuming µs = 1 here).

This is a 1-D problem again, so we can focus on just the X (horizontal) direction.

(a) Speed of combined object after collision :

Before the collision: block of wood at rest, and a 0.005 kg object with v = 300 m/s.

After the collision: both objects moving off at some velocity v, so:

Conservation of momentum: (
∑

p)before = (
∑

p)after so:

(2)(0) + (0.005)(300) = 2v + 0.005v = 2.005v or 2.005v = 1.5 so v = 0.7481 m/s.

(b) Energy lost :

Nothing is changing height, and no springs, so again we’ll focus on just the kinetic energy before
and after:

Kbefore =
∑

K = 1
2
(2 kg)(0)2 + 1

2
(0.005 kg)(300 m/s)2 = 225 J .

Kafter =
∑

K = 1
2
(2.005 kg)(0.7481 m/s)2 = 0.56 J .

(Notice I treated the block plus the bullet as a single object of mass 2.005 kg since they’ve merged
and are now moving together as a single object after the collision.)

Well - we didn’t lose just half the energy here, we lost 224.44 J out of 225 J or 99.75%!

(c) Force involved : this is an interaction force, so the force the bullet exerts on the block is
the same as the force the block exerted on the bullet (just in the opposite direction), so we don’t
technically need to calculate both, but we’ll do so anyway as a check:

Force of bullet on block: the block has a momentum before the collision of zero, and a momentum
after the collision of pafter = mv = (2 kg)(0.7481 m/s) = 1.4962 kg m/s.

Favg =
∆p
∆t

=
pafter−pbefore

∆t
= 1.4962−0

0.0001
= +14962 N .

Force of block on bullet: before the collision the bullet has pbefore = (0.005 kg)(300 m/s) =
1.5 kg m/s. After the collision, it has a momentum of pafter = (0.005 kg)(0.7481 m/s) =
0.0037405 kg m/s. Favg =

∆p
∆t

=
pafter−pbefore

∆t
= 0.0037405−1.5

0.0001
= −14962 N .

That’s about 15, 000 N of force, which is nearly 3400 pounds, comparable to the weight of an SUV.



It’s worth pausing for a moment to highlight a couple of things we’ve learned when collisions are
involved:

When Collisions (or explosions) are Involved:

• Mechanical energy is (usually) NOT conserved. There is ‘other’ work that is converting some
(most?) of the initial energy into heat and other forms.

• The forces involved in the collision itself normally OVERWHELM any other forces present in
the system.

This leads to a good rule of thumb to use if a collision (or explosion) occurs somewhere in a scenario:

When collisions (or explosions) are involved: focus on that
interaction via conservation of momentum only.

NOTE: it’s a common mistake when collisions are involved to try and use conservation of energy
to solve the whole problem, but as we’ve seen, some energy (and sometimes nearly all the energy)
ends up vanishing into ‘other work’ as a result of the collision.

We can use all our existing machinery (Newton’s laws, equations of motion, work, energy) right up
to the point of the collision, and again right after the collision, but during the collision itself, we
can only rely on conservation of momentum.

During the brief ∆t of the collision/explosion, the collision force is typ-
ically orders of magnitude larger than every other force present in the
situation, so we can ignore everything else and focus solely on conser-
vation of momentum to get us through that ‘event’ in the scenario.



Explosion : In an old Mythbusters episode, they test-
fired a grappling-hook launcher. The ‘launcher’ (essen-
tially a little cannon) was placed on a table and an ex-
plosive charge inside the barrel was set off, sending the
grappling hook horizontally (to the right) at a speed of
40 m/s. As a result, the launcher itself recoiled back-
wards (to the left), where a shock absorber (a spring)
kept it from hitting the wall. (Ignore friction here.)

The grappling hook (alone) has a mass of 10 kg, the (unloaded) launcher has a mass of 80 kg, and
the shock-absorbing spring had a spring constant of k = 50, 000 N/m. Determine:

(a) How far did the launcher push the spring in? m

(b) How much energy was ADDED to the system by the explosion? J

(c) How much force did the launcher ‘feel’ if the explosion took 2 ms? |Favg| = N

There’s a collision or explosion present here, so let’s focus on that part, where we can ONLY count
on conservation of momentum happening.

CoM in the X direction (with +X to the right here):
∑

before

(mvx) =
∑
after

(mvx) so:

(10)(0)+(80)(0) = (10 kg)(40 m/s)+(80 kg)(vx) so 0 = 400+80vx or vx = −5 m/s . The launcher

must have recoiled to the left at 5 m/s right after the explosion went off.

Now we can look at the launcher interacting with the spring. We have a 40 kg object moving at
5 m/s (to the left), running into the spring. The spring will compress until all that kinetic energy
has been ‘stored’ in the spring.

Basically the K = 1
2
mv2 = (0.5)(80 kg)(5 m/s)2 = 1000 J is converted into Us =

1
2
kd2 of potential

energy: 1000 = (0.5)(50000)(d)2 yields d = 0.2000 m. The spring compresses 20 cm in bringing the
launcher to a (momentary) stop.

How much energy did the explosion ADD to the system?

Before the explosion, nothing is moving. Right after, we have a 80 kg object moving at 5 m/s and a
10 kg object moving at 40 m/s. Adding the kinetic energies of those: E = 1

2
(80)(5)2+ 1

2
(10)(40)2 =

1000J + 8000J = 9000 J .

The explosion basically did 9000 J of ‘other work’ to the system. It probably released more energy
than that (sound, heat, the light flash, etc) but that’s how much went into the mechanical energy
of the two moving objects.

Force on LAUNCHER during the explosion: before the explosion, the launcher was not moving,
to pbefore = mvx = 0. Right after, pafter = (80 kg)(−5 m/s) = −400 kg m/s. Favg = ∆p/∆t =
(−400)−(0)

0.002
= −200, 000 N .

Force on HOOK during the explosion: pbefore = 0 and pafter = (10 kg) ∗ (40 m/s) = +400 kg m/s,

so Favg = ∆p/∆t = (400)−(0)
0.002

= +200, 000 N .



Ballistic Pendulum
Suppose we hang a 1 kg block of wood from the ceiling
on a 1 m long string. A 5 gm (0.005 kg) bullet comes
in from the left at 300 m/s and embeds itself into the
block. What happens? Conservation of momentum
occurs during the collision, so immediately after the
collision the combined block and bullet ‘object’ will be
moving to the right with some speed. That means it
has some kinetic energy at that point, and we earlier
looked at the pendulum problem: if it’s moving at
some speed at the bottom, how does that relate to the
angle it will swing out to?

It might be tempting to take the kinetic energy of the bullet and convert that into Ug of the pen-
dulum to find it’s maximum height, but we have a collision here, so it’s almost certain that some
(maybe most) of the mechanical energy will be lost at that point. (Not really ‘lost’ of course -
energy is conserved, but a lot will be converted into heat during the collision, so it’s no longer part
of our ‘mechanical energy’ collection of terms.)

Collision : We have a 1-D collision here, with the bullet travelling to the right striking the block
of wood, embedding itself into the wood, and then the instant after the collision the combined
object will be moving to the right with some velocity: a velocity we can find via Conservation of
Momentum. So:

X direction :
∑

before

mv =
∑
after

mv so: (0.005 kg)(300 m/s) + (1.00 kg)(0 m/s) = (1.005 kg)(v)

or 1.5 = 1.005v from which v = 1.4925 m/s . The combined object is moving that fast (to the

right) in the instant just after the collision. (Verify this, but before the collision we have 225 J of
mechanical energy; after the collision we only have 1.12 J remaining, so we definitely can’t use CoE
alone to solve this!)

The Swing : We’ve done this problem before a couple of times. We have a pendulum, with a

mass on the end of a 1 m long string. It’s moving to the right with v = 1.4925 m/s. The pendulum
will swing over to the right, gradually converting K into Ug until it reaches a point where it stops
moving. At that point, all the 1

2
mv2 of kinetic energy has been converted into mgh of gravitational

potential energy. (Remember, there’s no ‘other work’ here being done by FT since that force is
always perpendicular to the displacement as the block moves along the circular path.)

1
2
mv2 = mgh so h = v2/(2g) = (1.4925)2/(19.6) = 0.11366 m.

We can convert that into an angle as we’ve done
before also.
From the figure, we see that cos θ = L−h

L
=

1−0.11366
1

= 0.88634 from which θ = 27.6o.
For a given bullet mass, we could go through this
process for various reference speeds and come up
with a table or scale that maps incoming speed
into the final angle and use that to estimate the
bullet speed without requiring fancy (expensive)
high-speed cameras.



ADDENDUM : Pendulum Maximum Angle vs Incoming Bullet Speed

With a 5 gram bullet striking (and embedding into) a 1 kg block of wood,
how does the deflection angle of the pendulum vary with the incoming bullet velocity?

The steps involved in this calculation involved the (linear) Conservation of Momentum (CoM) step,
which relates the incoming bullet velocity to the resulting velocity of the combined object. Then
we squared that velocity in a Conservation of Energy (CoE) step to determine the maximum height
the combined object will reach, then finally an inverse cosine step to compute the angle.

Despite the two nonlinear steps in this process, the resulting deflection angle varies in a surprisingly
linear way until the incoming bullet velocity gets very large.



Characterizing Collisions

Elastic Collisions (energy conserved also) ← RARE

Note : these pool-balls are special frictionless versions that are not rotating - they’re just idealized
point masses that have mass and velocity. We’ll get to real rotating objects in the next chapter.
(So think of these as collisions happening out in space...)

Ball A○ moving at 10 m/s directly strikes ball B○ which was
at rest. After the collision, we observe that A○ is at rest.
Find vB after the collision and examine the energy before
and after the collision.
Assume mA = mB = 0.17 kg

Momentum is conserved as a vector. In this collision, everything is happening in a single direction,
which we’ll call X.

Before collision:
∑

before

mivi = (0.17 kg)(10 m/s) + (0.17 kg)(0) = 1.7 kg m/s

After collision:
∑
after

mivi = (0.17 kg)(0 m/s) + (0.17 kg)(V ).

Momentum is conserved, so 1.7 = 0.17V or V = 10 m/s. Apparently ball B must be moving off
with the same speed as the incoming cue ball had.

Let’s look at the total mechanical energy before and after this collision:∑
before

K = 1
2
(0.17)(10)2 + 0 = 8.5 J∑

after

K = 0 + 1
2
(0.17)(10)2 = 8.5 J also.

These types of collisions are referred to as ELASTIC COLLISIONS : momentum
is conserved (like always) and energy is conserved. This sometimes happens with
collisions between very solid objects that do not deform, or when something slides
into a spring. Elastic collisions are not the normal situation for most real-world
colliding objects. Some energy is almost always lost, so unless specifically noted we
can’t normally assume that energy will be conserved in collision problems.

Actual pool balls are pretty solid objects, so their collisions with one another are pretty close to
being elastic.



Inelastic Collision : Some mechanical energy lost ← COMMON

Suppose we actually observe ball B○ moving off at 8 m/s
instead of 10 m/s. Determine what happened to A○ and
look at the mechanical energy before and after the collision.

Before collision:
∑

before

mivi = (0.17)(10) + (0.17)(0) = 1.7 kg m/s

Momentum must be be conserved and B○ is moving more slowly now, so A○ must be moving as well
at some X velocity V:

After collision:
∑
after

mivi = (0.17)(V ) + (0.17)(8) = 0.17V + 1.36

Conservation of momentum: 1.7 = .17V +1.36 so V = 2 m/s (positive so A must be moving to the
right, following B but at a much slower speed).∑
before

K = 1
2
(0.17)(10)2 + 0 = 8.5 J∑

after

K = 1
2
(0.17)(2)2 + 1

2
(.17)(8)2 = 0.34J + 5.44J = 5.78J

In this collision, 32% of the initial mechanical energy was ‘lost’ (and would have gone into heat
probably).

We apparently lost some energy in this collision. This is the more usual case with
collisions, and these are called INELASTIC COLLISIONS : momentum is con-
served (as always), but some mechanical energy is lost (often being converted into
heat). (The train-car collision and bullet+block examples from the previous lecture
are inelastic collisions.)



Totally Inelastic Collision : Maximum loss of mechanical energy

Let’s modify our previous examples so that the pool balls
are covered with Velcro or super-glue causing them to stick
together during the collision, and move off as a single object.
How fast does the combined object move after the collision?
How much energy is lost now?

Before collision:
∑

before

mivi = (0.17)(10) + (0.17)(0) = 1.7 kg m/s

After collision: now we have a single blob of mass 0.17 + 0.17 = 0.34 kg moving at some velocity
V :

∑
after

mivi = (0.34 kg)(V ).

Momentum is conserved, so 1.7 kg m/s = (0.34 kg)(V ) or V = 5 m/s.

Let’s look at the total mechanical energy before and after this collision.∑
before

K = 1
2
(0.17)(10)2 + 0 = 8.5 J∑

after

K = 1
2
(0.34)(5)2 = 4.25J

Compared to the previous examples, in this collision, 50% of the initial mechanical energy was ‘lost’
(and would have gone into heat probably).

It turns out this ‘sticking together’ scenario is the one where the largest possible
amount of energy gets lost, and it is referred to as a TOTALLY INELASTIC
COLLISION.



Example : 1-D Elastic Collision

(Note: this is basically HW09-28 in the Test 3
sample problems, just with different numbers.)
A 2 kg hockey puck, moving in the +X direction
with a speed of 8 m/s has a head-on collision with
a 4 kg push that is initially at rest.
Assuming an elastic collision occurs here, what
will the velocities of the two objects be just after
the collision?

Conservation of momentum in the X direction:
∑

before

(mvx) =
∑
after

(mvx)

so here we have: (2)(8) + (4)(0) = (2)v′A + (4)v′B or 16 = 2v′A + 4v′B or dividing everything by 2:

8 = v′A + 2v′B .

If this is an elastic collision, the mechanical energy right before and right after the collision will
remain the same. There aren’t any springs and nothing changes height during the brief collision
event, so in effect we just need to look at the kinetic energy here.

Total kinetic energy before:
∑

Ki =
1
2
(2)(8)2 + 1

2
(4)(0)2 = 64 J .

Total kinetic energy right after:
∑

Ki =
1
2
(2)(v′A)

2 + 1
2
(4)(v′B)

2.

Setting those equal, we have 64 = (v′A)
2 + 2(v′B)

2 .

We have two equations and two unknowns, but one of the equations involves the squares of the
variables so how do we combine these? One approach is to rearrange the first equation into the
form: v′A = 8− 2v′B and replace the v′A variable in that second equation:

64 = (8− 2v′B)
2 + 2(v′B)

2

Expanding out that first term on the RHS of the equation leaves us with:

64 = 64− 32v′B + 4(v′B)
2 + 2(v′B)

2

Subtracting 64 from each side and combining like terms:

0 = 6(v′B)
2− 32v′B which we can factor into: 0 = 2v′B(3v

′
B − 16) which immediately has solutions of

either:

• v′B = 0 which means that v′A = 8− 2(0) = 8 m/s, or:

• v′B = 5.333 m/s, which means that v′A = 8− 2(5.333) = −2.666.. m/s

The first ‘solution’ represents the objects just retaining their original velocities as if nothing hap-
pened: they missed each other, or A just passed right through B. Neither is the case we’re looking
for though, so the actual solution must be the second one. The heavier puck (initially at rest) moves
off to the right, and the lighter one bounces back at the given velocity.



Additional Example: Anvil Toss
In the anvil-tossing example we did back in the 1-D and 2-D
motion chapters, a 90 kg anvil was launched via an explosive
and ended up reaching an apogee height of 78.4 m. (Assume
vertically straight up for this problem.)

• How much energy was released in the explosion? (C-4
has a chemical energy density of about 6 MJ/kg, so how
much was needed?)

• If the detonation took ∆t = 0.1 ms, what force did the
explosion exert on the anvil?

HINT: focus on CoE outside of the tiny explosion window. What is Ug at the apogee point? What
is K at launch? (Use to determine vo, which we’ll need in the momentum calculation.)

At point (a), we have the anvil sitting at rest with a blob of explosive between it and the ground.

At point (b), the explosion has gone off, launching the anvil vertically upward. In a CoE sense,
(K + Ug + Us)b = (K + Ug + Us)a + Wother where it’s the explosion being that Wother term: in a
very brief time interval, a bunch of energy was converted from chemical energy in the explosive into
mechanical energy (really just kinetic energy) of the anvil.

From (b) to (c), that initial kinetic energy is getting converted into gravitational potential en-
ergy and when the object reaches its maximum height, it’s all now in the form of Ug = mgh =
(90 kg)(9.8 m/s2)(78.4 m) = 69, 149 J .

Now we can work backwards. That 69, 149 J of Ug at the apogee point (c) must be the anvil’s
kinetic energy at point (b), meaning it was launched with a speed of 1

2
mv2 = (0.5)(90)(v)2 = 69149

or vb = 39.2 m/s.

That 69, 149 J of initial kinetic energy came from the chemical energy stored in the explosive, so
we can work out how much C-4 was used here:

69149 J × 1 kg
6000000 J

= 0.0115 kg or about 11.5 grams. (Probably more though since some fraction
of the initial chemical energy also gets converted into sound, light, heat, and other types of energy
during the explosion.)

We can also estimate the force involved by looking at the change in momentum of the anvil.
Before the detonation, it’s at rest so pbefore = 0. Just after the explosion, it’s momentum is
pafter = (90 kg)(39.2 m/s) = 3528 kg m/s.

Favg = ∆p
∆t

= 3528−0
0.0001

= 35, 280, 000 N (about 6 times larger than the force involved in the colliding
railcars we started off with!)



Additional Example : Pendulum with 1-D Elastic Collision

(HW09-86) : Two balls of massesmA = 40 g and
mB = 60 g are suspended on 30 cm long strings
as shown in the figure. The lighter ball is pulled
away to a 66o angle and released at rest. Assume
that the balls are made of a material that allows
this to be an elastic collision.

(Note that the magic words elastic collision ap-
pear here, which means that during the collision
both energy and momentum will be conserved.)

(a) What is the velocity of the lighter ball just before impact?

(b) What is the velocity of each ball just after the elastic collision?

(c) What will be the maximum height of each ball after the elastic collision?

Basically object A will swing down and collide with object B. After the collision, each object will
have some velocity that will get converted back into gravitational potential energy, resulting in each
object swinging out to some height above the bottom of the arc (probably different heights..)

We can use CoE to determine how fast object A is mov-
ing just before it strikes object B. We’ve done that be-
fore back in chapter 7 and 8 with pendulums, so I’ll
pull in a figure from back then. Between the start-
ing location for object A and the point just before
striking object B, conservation of energy tells us that:
(K + Ug + Us)2 = (K + Ug + Us)1 +

∑
other W . We’ll

measure our heights (for the Ug = mgh term) relative
to the lowest point on the circle. The only ‘other’ force
acting on object A is the tension in the string but in
the pendulum geometry we’ve already argued that since
the tension force is radial and the displacement is tan-
gent to the circle, the angle between the vector tension
force and the vector displacement is 90o all along the
path, so F⃗T does no work in this scenario. CoE becomes:
1
2
mv2 + 0 + 0 = 0 + mgh + 0 + 0 or v =

√
2gh where

here h = L − L cos θ = 0.3 − 0.3 cos (66o) = 0.178 m so
|v| =

√
(2)(9.8)(0.178) = 1.868 m/s. Object A strikes

object B at that speed.

If we look in the horizontal direction, conservation of momentum is
∑

(mivi)before =
∑

(mivi)after so
mAvA = mAv

′
A+mBv

′
B. (We’re using that ‘prime’ symbol to label the velocities after the collision.)

We have two unknowns on the right hand side now, so conservation of momentum alone won’t be
enough to solve this problem.



We were told that this was one of those ultra rate ELASTIC collisions where mechanical energy is
also conserved. During the tiny ∆t of the collision, the objects won’t change height significantly
(or at all) and we don’t have any springs here, so basically it’s kinetic energy that must be being
conserved here. That gives us our second equation: the total kinetic energy just before the collision
is the same just after the collision (AGAIN this is VERY RARE and is NOT TRUE for most
collisions).

In this special case though:
∑

Kbefore =
∑

Kafter so:
1
2
mAv

2
A = 1

2
mA(v

′
A)

2 + 1
2
mB(v

′
B)

2

We now have two equations and two unknowns. After a bit of algebra, we find that:

• v′A = vA(
mA−mB

mA+mB
)

• v′B = vA(
2mA

mA+mB
)

• WARNING : Very specialized equations

• ONLY VALID for 1-D elastic collisions where
the second object was initially at rest

I have to repeat again here that these are VERY specialized equations that only apply
for 1-D ELASTIC collisions where the 2nd object is initially at rest. They CANNOT
be used in any other situation. (They’re so frequently mis-used on tests that I didn’t
include them on the equation sheet.)

Since we were told this was an ELASTIC collision though, we can use them, resulting in:

• v′A = (1.868 m/s)(0.04−0.06
0.04+0.06

) = −0.3726 m/s

• v′B = (1.868 m/s)( (2)(0.04)
0.04+0.06

) = +1.4944 m/s

(Note that v′A is negative, meaning that ball A bounced back to the left.)

We showed earlier we can connect the speed at this point to the height where the object momentarily
comes to a stop is: v =

√
2gh so h = v2/(2g) so we can find the heights each object returns to:

• Object A : h = v2/(2g) = (−0.3726)2/19.6 = 0.00708 m

• Object B : h = v2/(2g) = (+1.4944)2/19.6 = 0.11394 m

And if we needed the angles each object swings out to, we can convert h into θ since h = L−L cos θ.
Rearranging that, we find that cos θ = 1− h

L
.

Ball A will swing back to the left, reaching cos θ = 1 − (0.00708)/(0.30) = 0.9764 from which
θ = 12.5o.

Ball B will swing out to the right, reaching cos θ = 1 − (0.11394)/(0.30) = 0.6202 from which
θ = 51.7o.


