
PH2213 Fox : Lecture 21
Chapter 9 : Linear Momentum

Real Version of Newton’s Laws∑
F⃗ = dp⃗

dt
where p⃗ = mv⃗

p⃗ = mv⃗ is called the momentum of an object.

If the mass is constant, d(mv⃗)/dt = mdv⃗/dt = ma⃗ so this ‘real’ version reduces to what we’ve been
using so far, as long as the mass is constant.

The ‘real’ version of Newton’s Laws also handles cases where the mass of the object isn’t constant.
Examples are rockets, where most of the mass of the rocket is actually it’s fuel, which is being
consumed while the rocket engine is running. It also handles things like an open crate travelling
along a conveyor as items are being added to it (thus increasing it’s mass).

Implications

• F⃗avg =
∆p⃗
∆t

If we see an object change its momentum over some interval ∆t, we can determine the average
force that must have been acting on it during that interval.

• Rearranging: ∆p⃗ =
∫
F⃗ (t)dt which we can write as

v(t) = vo +
1
m

∫
F⃗ (t)dt

giving us a way to handle time-varying forces

• Conservation of momentum during interactions:∑
before

p⃗ =
∑
after

p⃗

Breaking this vector equation into components:∑
before

(mvx) =
∑
after

(mvx)
∑

before

(mvy) =
∑
after

(mvy) etc.

We will find, as we work through the examples, that mechanical energy, our particular subset of
energies in the form of (K + Ug + Us), is usually NOT conserved during collisions.

We will also find that the forces involved during the brief time intervals involved in most collisions
are tiny compared to the force of the collision itself, so we can usually ignore any other forces acting
on the object(s) during that tiny time interval.



Example : HW09-06 : Force on Baseball
A 0.145 kg baseball flying horizontally at 32 m/s
strikes a bat and is popped straight up to a height
of 36.5 m. If the contact time between the bat and
the ball is 0.7 ms, calculate the average force the bat
exerted on the ball during contact.

The force on the ball can be found by looking at how its momentum changes: F⃗avg = ∆p⃗
∆t

where
∆p⃗ = p⃗after − p⃗before refers to the change in the momentum of the BALL alone.

Using a coordinate system with +X to the right, and +Y vertically upward, the ball is initially
moving directly to the left, so we’d write its velocity as v⃗ = (32 m/s)(−î) (32 meters/second in the
negative X direction), so the ball’s momentum before the collision would be p⃗before = mv⃗before =
−(0.145 kg)(32 m/s)̂i = −4.64̂i (with units of kg m/s but if we put everything in standard metric
units of meters, kilograms, seconds, etc, then the force will end up coming out in Newtons, so I’ll
drop writing all the units here).

After the collision, p⃗after = mv⃗after but what velocity did the ball have right after the collision?
We know it flew upward 36.5 m after the collision event was over, and the ball it flying vertically
upward, so we can use work-energy or conservation of energy to determine what its velocity must
have been (right after the collision).

Between the point just after the collision and the apogee point:

(K + Ug + Us)top = (K + Ug + Us)bottom +Wother

We have no springs here, and no ‘other’ work so:

0 + mgh + 0 = 1
2
mv2 + 0 + 0 + 0 or just mgh = 1

2
mv2 or finally v =

√
2gh =

√
(2)(9.8)(36.5) =

26.75 m/s.

The ball is flying that fast, vertically upward, so v⃗after = +26.75ĵ (m/s) and p⃗after = mv⃗after =
(0.145)(26.75)ĵ = 3.88ĵ

Finally we can compute the force on the ball:

F⃗avg =
∆p⃗
∆t

=
p⃗after−p⃗before

∆t
= (3.88ĵ)−(−4.64̂i)

0.0007 sec
= 5543ĵ + 6629̂i (in Newtons).

In the usual order (x,y,z), we should probably write that as F⃗avg = (6629̂i + 5543ĵ) N . This force
is to the right and up: the component to the right is stopping the leftward motion of the ball; the
component up is giving it the vertical velocity it needed to reach the given apogee point.

From Newton’s third law, the ball then will exert an equal but opposite force on the bat.

The magnitude of the force will be |F | =
√

F 2
x + F 2

y = 8641 N . What average acceleration did the
ball undergo during its interaction with the bat? F = ma so a = F/m = (8641 N)/(0.145 kg) =
59591 m/s2. Converting units, this is about 6080 g′s of acceleration. At the start of an earlier
lecture, I showed a video of a baseball colliding with a bat and we saw how much the ball (and bat)
deformed during the collision.



Example : 2-D Car Collision
A 1000 kg car travelling east at 20 m/s collides with a
2000 kg truck travelling north at 15 m/s. Assume this
is a totally inelastic collision (objects ‘stick together’
as a result of the collision).

• At what angle does the combined object move
off?

• If each driver has a mass of 100 kg, determine
the force (as a vector, then as a magnitude) on
each driver if the collision took ∆t = 0.1 s

Momentum is conserved as a vector, so let’s break that
(vector) equation into its components. The total X mo-
mentum before the collision must equal the total X mo-
mentum after the collision. Ditto for the Y (and Z) com-
ponents. If momentum is conserved as a vector, its com-
ponents must also be conserved.

We’ll use a coordinate system with +X to the right (East, in the words of the problem), with +Y
toward the top of the page (North).

Conservation of momentum in the X direction : the 1000 kg car is travelling entirely in the
+X direction (so its velocity is entirely X), and the 2000 kg car is travelling entirely in the +Y
direction (so it has a zero velocity component in the X direction):

After the collision, we have a combined 3000 kg object moving with some velocity vector v⃗, with
components vx and vy∑
before

(mvx) =
∑
after

(mvx) so (1000 kg)(20 m/s) + (2000 kg)(0 m/s) = (3000 kg)(vx) from which

vx = 6.67 m/s .

Conservation of momentum in the Y direction : the 1000 kg car is travelling entirely in the
+X direction (so its Y velocity component is zero), and the 2000 kg car is travelling entirely in the
+Y direction (so all its velocity is in its Y component):

After the collision, we have a combined 3000 kg object moving with some velocity vector v⃗, with
components vx and vy∑
before

(mvy) =
∑
after

(mvy) so (1000 kg)(0 m/s) + (2000 kg)(15 m/s) = (3000 kg)(vy) from which

vy = 10.0 m/s .

Speed and angle of wreck : Immediately after the collision, we have the X and Y components
of the velocity of the combined object, so v =

√
v2x + v2y =

√
(6.67)2 + (10.00)2 = 12.02 m/s and

tan θ = vy/vx = 10/6.67 = 1.50 so θ = 56.3o.

Energy Lost : How much (mechanical) energy was lost in this collision?

Before the collision, the car has K = 1
2
mv2 = (0.5)(1000)(20)2 = 200, 000 J and the truck has

K = 1
2
mv2 = (0.5)(2000)(15)2 = 225, 000 J so overall there’s 425, 000 J of mechanical energy just



before the collision.

After the collision, we have a 3000 kg object moving at a velocity v⃗ but we found it’s components
to be vx = 6.67 m/s and vy = 10 m/s. so it’s speed is v =

√
(vx)2 + (vy)2 = 12.02 m/s. It thus has

a kinetic energy of 1
2
(3000 kg)(12.02 m/s)2 = 217, 000 J .

We apparently lost 425000−217000 = 208, 000 J of energy here: that much energy did ‘other’ work
damaging the vehicles...

Impact on the Driver of the Car

Let’s look at the force the driver of the car felt during the collision. They’re being carried along
with the car, so their momentum changes also.

Force on person in car: F⃗avg = ∆p⃗/∆t =
p⃗after−p⃗before

∆t

p⃗before = mv⃗before = (100)(20̂i+ 0ĵ) = 2000̂i+ 0ĵ.

p⃗after = mv⃗after = (100)(6.67̂i+ 10ĵ) = 667̂i+ 1000ĵ.

F⃗avg =
p⃗after−p⃗before

∆t
= (667̂i+1000ĵ)−(2000̂i)

0.1
= −13333̂i + 10000ĵ (N). The magnitude of that force is

|F | = 16, 700 N and using F = ma or a = F/m the car’s driver ‘felt’ an acceleration of about
167 m/s2 or about 17 g′s during the 0.1 sec of the collision.

Impact on the Driver of the Truck

Going through the same process for the truck driver:

p⃗before = mv⃗before = (100)(0̂i+ 15ĵ) = 0̂i+ 1500ĵ.

p⃗after = mv⃗after = (100)(6.67̂i+ 10ĵ) = 667̂i+ 1000ĵ.

F⃗avg =
p⃗after−p⃗before

∆t
= (667̂i+1000ĵ)−(1500ĵ)

0.1
= 6667̂i − 5000ĵ (N). The magnitude of that force is

|F | = 8300 N , which is about half the force the car driver underwent. Using the truck driver’s
100 kg mass, this represents an acceleration of a = F/m = 83m/s2 or roughly 81

2
g′s of acceleration.

Reducing Impact of Crashes
Momentum conservation is unavoidable, so there’s literally nothing we can do about
the ∆p⃗ term in our F⃗avg calculation. The only thing we might be able to control is
the ∆t. When old solid steel cars from the 50’s collided, the interaction was very
abrupt. The car, frame, etc didn’t ‘give’ much. Modern cars are designed to absorb
a lot of the energy though: the front and rear of the vehicles are designed to collapse,
basically sacrificing the vehicle in order to spread out the ∆t over which the collision
occurred, thus greatly reducing the forces felt by the people inside.



Vector CoM : Spacecraft-Asteroid Collision

A 100 kg spacecraft travelling in the +X direction at 200 m/s collides with a 5000 kg asteroid.
(We’re using a coordinate system attached to the asteroid at this instant, so it’s velocity would be
zero.) After the collision, the spacecraft dislodges a 1000 kg chunk of the asteroid and they move
off together as shown.

• What must the velocity of the remaining 4000 kg part of the asteroid be?

• How much energy was lost in the collision?

Conservation of momentum in the X direction :
∑

before

(mvx) =
∑
after

(mvx)

(100)(200) + (5000)(0) = (1100)(10 cos 30o) + (4000)(vx) or vx = 2.618 m/s

Conservation of momentum in the Y direction :
∑

before

(mvy) =
∑
after

(mvy)

(100)(0) + (5000)(0) = (1100)(10 sin 30o) + (4000)(vy) or vy = −1.375 m/s

Kinetic Energy Before Collision :
∑

K = 1
2
(100)(200)2 + 0 = 2, 000, 000 J

Kinetic Energy After Collision : The remaining big chunk of the asteroid has a speed of:

v =
√

(v2x + v2y) = 2.9575 m/s so after the collision:
∑

K = 1
2
(1100)(10)2 + 1

2
(4000)(2.5882)2 =

55000 + 17493 = 72494 J

Energy lost in collision: ∆E = Eafter − Ebefore = −1, 927, 506 J (about 96% of the original energy
was lost here).

See the DART asteroid-redirection experiment from September 2022. In that test, the spacecraft
had a mass of 610 kg and was travelling at about 6600 m/s. The asteroid (Dimorphos) had a mass
between 1.3× 109 kg and 4× 109 kg, and as a result of the collision the asteroid’s velocity changed
by a few mm/sec. (Seems insignificant, but even a change this small if done while an asteroid is
still far enough away from Earth might be enough to cause it to miss us.)



Example: Pool balls : Two pool balls are touching one another on a flat, horizontal pool table

as shown in the figure. We shoot the cue ball towards them with a speed of 6 m/s at the 45 degree
angle shown. After the balls collide, we see that ball 2 heads straight in the +x direction with a
speed of 2 m/s and ball 3 heads off at the 30o angle shown in the figure with a speed of 3 m/s.

What is the vector velocity of the cueball after this collision? (Assume all the balls have the identical
0.15 kg mass, and use coordinates such that +x points off to the right and +y points towards the
top of the paper.)

Momentum is conserved as a vector, so
∑

before

px =
∑
after

px and
∑

before

py =
∑
after

py.

Now, p = mv and all the balls have identical masses here so let’s apply CoM and just use the
symbol M to represent that value.

X direction : Looking at just the x components first, initially we have one ball moving at a
speed of 6 m/s at the angle shown. This velocity will have an x component of (6 m/s)(cos 45) =
4.243 m/s so the total momentum in the x direction initially is (M)(4.243 m/s). After the collision,
we have ball 2 moving entirely in the x direction with a speed of 2 m/s, and ball 3 has an x
component of velocity of (3 m/s)(cos 30) = 2.598 m/s. We also have the 1 ball with some unknown
x component of velocity of, say, vx. The total momentum in the x direction after the collision then
is: (M)(vx)+(M)(2m/s)+(M)(2.598m/s). But the momentum before and after must be the same,
so: (M)(4.243 m/s) = (M)(vx)+(M)(2 m/s)+(M)(2.598 m/s). We can divide this entire equation
by M resulting in: (4.243 m/s) = (vx)+(2 m/s)+(2.598 m/s) or (4.243 m/s) = (vx)+(4.598 m/s)

or finally vx = −0.355 m/s .

Y direction : Looking at conservation of momentum in the y direction, the ‘1’ ball has an initial
y velocity of (6 m/s)(sin 45) = 4.243 m/s in the negative y direction, so the initial y momentum is∑

py = −(M)(4.243m/s). After the collision, ball 2 has no momentum in the y direction. Ball 3 has
a y velocity of (3 m/s)(sin 30) = 1.5 m/s in the negative y direction, and ball 1 has a y momentum
of (M)(vy). So conservation of momentum in the y direction tells us that: −(M)(4.243 m/s) =

(M)(vy) + (0) + (M)(−1.5 m/s) or −4.243 m/s = vy − 1.5m/s or vy = −2.743 m/s .

Energy Loss : Kinetic energy is usually not conserved in collisions. In this collision, the initial

kinetic energy is K =
∑

Ki =
1
2
(0.15)(6 m/s)2 = 2.7 J

The speed of the 1 ball after the collision was v1 =
√

(0.355)2 + (2.743)2 = 2.766 m/s so the final
kinetic energy after the collision was K =

∑
Ki =

1
2
(0.15)(2.766)2 + 1

2
(0.15)(2)2 + 1

2
(0.15)(3)2 =

1.549 J , so about 43% of the initial energy was lost in the collision.

(Real pool-ball collisions usually represent a much smaller percentage loss.)



ADDENDUM : Spring and Two Objects (I)

Two boxes (on a frictionless surface) are pushed
together with a spring between them and held in
place (at rest). The spring has k = 48000 N/m
and in figure (a) it’s compressed by 5 cm.
When they’re released, how fast will each box be
moving when they separate from the spring?

Everything’s happening in 1-D here (let’s call the horizontal direction X with +X pointing to the
right on the page).

Conservation of momentum in the X direction :
∑

before

(mvx) =
∑
after

(mvx), so: (5)(0)+(5)(0) =

(5)v5 + (10)v10

(I’m pretty sure v⃗5 will be off to the left, but let’s just let the algebra determine that.)

Ultimately then, we have: 0 = 5v5 + 10v10 or rearranging v5 = −2v10

Conservation of Energy : there’s no ‘collision’ here, and no forces that would be adding or
removing energy from this ‘system’, so the total energy after they separate will equal the total
energy before, so:

(K + Ug + Us)after = (K + Ug + Us)before +Wother (with Wother = 0 here).

Initially, we have nothing moving but we do have energy in the compressed spring of Us =
1
2
kd2 =

(0.5)(48000)(0.05)2 = 60 J .

After they separate, we have no energy in the spring, but we have two moving objects with a total
kinetic energy of: 1

2
(5 kg)(v5)

2 + 1
2
(10 kg)(v10)

2 or 2.5v25 + 5v210.

Energy being conserved, that means that 60 = 2.5v25 + 5v210 .

We have two equations and two unknowns now. We know from the first equation that v5 = 2v10
so making that substitutions: 60 = 2.5(2v10)

2 + 5v210 or 60 = 10v210 + 5v210 or simply 60 = 15v210.
Dividing each side by 15 we’re left with 4 = v210 or v10 = ±2.

Looking at each solution:

• If v10 = +2 m/s, then v5 = −2v10 = −4 m/s. So this solution has the 10 kg block moving to
the right at 2 m/s and the 5 kg block moving to the left at 4 m/s. (Seems viable so far.)

• If v10 = −2 m/s then v5 = −2v10 = +4 m/s. This solution implies that after they move away
from the spring, the 10 kg block is moving at 2 m/s to the left with the 5 kg block moving
at 4 m/s to the right.

That second solution is definitely not possible since it means the two blocks had to pass through
each other at some point, so the first option is the only possibility.



ADDENDUM : Spring and Two Objects (I)

Two boxes are sliding towards each other on a fric-
tionless, horizontal surface as shown in the figure.
A spring with k = 48000 N/m is placed between
them.
The spring causes each object to slow down, reach-
ing a point where they’re moving together at the
same velocity (which will also be the point of max-
imum compression for the spring). How fast are
they moving together at this point?
The compressed spring will eventually push the
boxes apart. How fast will each be moving when
they separate?

Once they hit the spring from each side, it’ll start compressing, eventually reaching some maximum
amount of compression where the blocks are as close together as they’re going to get. At that point
they’re no longer moving relative to one another, so they’re moving at the same velocity v as shown
in the middle figure.

Conservation of momentum in the X direction :
∑

before

(mvx) =
∑
after

(mvx), so: (5)(4) +

(10)(−4) = (5)(v) + (10)(v) or −20 = 15v from which v = −1.333.. m/s . At their closest

approach, with the spring maximally compressed (figure b), the blocks are moving to the left
together at 1.333.. m/s.

How far did the spring compress?

There’s nothing to add or remove energy to the system here, and the blocks never actually touch (no
actually energy-losing collision occurs), so again we can use both CoM and CoE to find a solution.

In the upper figure, the total energy present is just the combined kinetic energy of the two blocks:
Ebefore =

1
2
(5 kg)(4 m/s)2 + 1

1
(10 kg)(4 m/s)2 = 40 + 80 = 120 J .

In the middle figure, we have the combined 15 ks object moving at 1.333.. m/s for a total kinetic
energy of K = 1

2
(15 kg)(1.333.. m/s)2 = 13.333.. J .

The missing 120 − 13.333.. = 106.666.. J is the energy stored in the spring at that instant, which
is Us =

1
2
kd2 = 24000d2 so 24000d2 = 106.666.. which yields d = 0.0667 m or about 6.7 cm.

After separation

Momentum is conserved throughout this interaction, so the total momentum in figure (c) has to be
the same as we started with: −20 kg m/s.

In figure (c), we have
∑

mvx = (5)(v5) + (10)(v10 so apparently 5v5 + 10v10 = −20 or dividing by

5: v5 + 2v10 = −4 which we could write as v5 = −(4 + 2v10) .

Once the blocks have completely separated from the spring, it’s no longer storing any energy, so all
the 120 J of energy we started with has moved back to the moving blocks now. The total kinetic

energy present is: 1
2
(5)(v5)

2 + 1
2
(10)(v10)

2 = 120 or 2.5v25 + 5v210 = 120 .



The two boxed equations can now be combined. Replacing v5 in the later boxed equation with
v5 = −(4 + 2v10) and combining some like terms, we end up with the quadratic equation:
15v210 + 40v10 − 80 = 0 which has two solutions:

• One solution is v10 = −4 m/s, in which case v5 = −(4 + 2v10) = +4 m/s. But those are
exactly the original velocities of the two boxes, which means this is the solution where they
just miss the spring entirely (or pass through it and each other), so it’s certainly not the
solution we’re looking for.

• The other solution is v10 = +1.333.. m/s (meaning the 10 kg block bounced back to the right
at a fairly slow speed). And in this case, we get v5 = −6.67 m/s, meaning the lighter block
bounces back to the left. That seems viable!



ADDENDUM : 1-D collision example from a recent test.
A little toy car A○ is being held in place against
a compressed spring. When released, it shoots
across the floor along an essentially frictionless
track that curves up on the other end, where a sec-
ond car B○ is located (and is not moving). When
car A undergoes a 1-D collision with car B, their
little bumpers lock together.

This combined object now flies through the air, eventually crashing back down on the floor.

Car A has a mass of mA = 0.10 kg and car B has a mass of mB = 0.30 kg. The spring here has a
spring constant of 500 N/m and was initially compressed by 0.1 m. The end of the ramp where
car B was sitting is located exactly 0.5 m above the floor.

(a) How fast was car A○ moving the instant just before colliding with car B○? m/s

(b) How fast was the ‘combined object’ moving when it hit the ground? m/s

Don’t overcomplicate this: no equations of motion are needed (or allowed anyway), so just focus on
conservation of energy (where appropriate) and conservation of momentum (during the collision).



Position 1 : mass A is at rest touching the compressed
spring. The mechanical energy of object A at this point
is: EA = K + Ug + Us = 0 + 0 + 1

2
kd2, so:

EA = (0.5)(500 N/m)(0.1 m)2 = 2.5 J

Position 2 : the spring has pushed the object off to the
right. Basically all the Us that had been stored in the
spring has now been converted into kinetic energy of the
object. The mechanical energy of object A at this point
is: EA = K + Ug + Us =

1
2
mv2 + 0 + 0 = 2.5 J

We could use that to compute A’s speed at this point:
(0.5)(0.1 kg)(v)2 = 2.5 from which |v| = 7.071 m/s.

Position 3 : object A slides up the ramp (no friction
here to remove energy) and is just about to collide with
object B. Basically all the kinetic energy the object had
in position 2 has been converted into two forms: grav-
itational potential energy, and some remaining kinetic
energy. The mechanical energy of object A at this point
is: EA = K + Ug + Us =

1
2
mv2 +mgh+ 0 = 2.5 J

(We still have the same 2.5 J of energy we started with, so technically we could have gone straight
from position 1 to position 3 with our CoE equation.) (0.5)(0.1 kg)(v)2+(0.1 kg)(9.8m/s2)(0.5m) =
2.5 from which |v| = 6.340 m/s which is the speed of object A the instant right before the collision.



Collision! Object A, moving at the speed we just found,
collides and connects with object B, and that combined
object (with a combined mass of 0.4 kg now) is now mov-
ing off with some new speed.
Momentum is conserved as a vector, so basically this is
a 1-D equation. Car A is moving in some direction (par-
allel to the ramp, whatever direction that is), and after
the collision that vector momentum has now been trans-
ferred to the combined object, so the direction remains
the same. Let’s call that direction our ’X’ axis, then CoM
in this rotated X direction will be:∑

(mivi)before =
∑

(mivi)after so:
(0.1 kg)(6.340 m/s) + (0.3 kg)(0) = (0.4 kg)(v) or v = 1.585 m/s.

This is a totally inelastic collision, so we should be losing quite a bit of the mechanical energy
during the collision. The instant just before the collision our 0.1 kg car moving at 6.340 m/s had
a kinetic energy of K = 1

2
(0.1 kg)(6.340 m/s)2 = 2.01 J .

The instant after the collision, we have a 0.4 kg object moving at 1.585 m/s, representing a kinetic
energy of K = 1

2
(0.4 kg)(1.585 m/s)2 = 0.502 J . Looks like we lost about 75% of our energy during

the collision.

Position 5 : The combined object has left the top of the
ramp with a now known speed of v = 1.585 m/s and we
want to determine how fast it’s moving when it hits the
ground. From positions 4 to 5, we don’t have any ‘other’
work (just gravity’s involved and we can deal with that
via Ug), so applying CoE between those two points:
(K+Ug+Us)5 = (K+Ug+Us)4+Wother so:

1
2
mv25+0+0 =

1
2
mv24 +mgh+0+0. Leaving that symbolic for one more

step, we see that every surviving term in the equation
has the same m in it, so multiplying the entire equation
by the factor 2/m we have:

v25 = v24 + 2gh or v25 = (1.585 m/s)2 + (2)(9.8 m/s2)(0.5 m) = 12.31 from which |v5| = 3.51 m/s.
That’s how fast the combined object is moving when it hits the floor.


