
PH2213 Fox : Lecture 22
Chapter 9 : Linear Momentum

Center of Mass

Real objects aren’t point masses. A real object will react according to Newton’s Laws but may also
rotate.

Observations

Center of Mass : mass-weighted average coordinate

Point
Masses

r⃗cm =

N∑
i=1

mir⃗i

N∑
i=1

mi

r⃗cm =

N∑
i=1

mir⃗i

M

Solid r⃗cm =
∫
r⃗dm

M

Technically finding the CM for a solid object involves doing an integral, we’ll show how we can use
symmetry arguments to deal with common geometric shapes, and then show how we can find the
CM of a more complicated object by breaking it down into simpler components.



Why is the CM concept important?

Start: r⃗cm = 1
M

∑
mir⃗i so rearrange into: Mr⃗cm =

∑
mir⃗i.

Differentiate with respect to time : Mv⃗cm =
∑

miv⃗i

Differentiate with respect to time again: Ma⃗cm =
∑

mia⃗i.

Right-hand side: m1a⃗1 =
∑

F⃗1 (sum of all the forces acting on object 1 (or part 1, or molecule 1,...)

The RHS thus is basically:
the sum of all forces acting on object 1, PLUS
the sum of all forces acting on object 2, PLUS
....etc...

BUT: the vast majority of those forces are INTERNAL. Somewhere in that sum will be a term
where object N is exerting some force on object M and a term where object M is exerting an equal
and opposite force on object N. All those pairs will cancel due to Newton’s third law.

This leaves the RHS only containing any external forces still acting on the object (like gravity):

Ma⃗cm =
∑

external F⃗ .

This is a BIG DEAL: if a composite object (like a book or the wrench on the previous page, made
of gazillions of atoms for example) is tossed into the air, it’s CM will follow the same path a point
object of the same mass would have.

The object can (and almost certainly will) ROTATE about that center of mass point though, and
that’s what the remainder of the course will focus on: angular motion, and the forces (torques)
that cause that rotational motion.



A mobile is constructed with three steel balls con-
nected with thin (massless) rods. Determine the cen-
ter of mass of the mobile.

• M1 = 10 g at the origin: x = 0, y = 0

• M2 = 2 g at x = 1 m, y = 0

• M3 = 5 g at x = 0, y = 3 m

• Xcm =
∑

(mixi)∑
mi

• Ycm =
∑

(miyi)∑
mi

Note that in the CM equations, the masses appear both in the numera-
tor and denominator, so we can just leave all the masses in grams here:
the ‘mass units’ will end up cancelling out as long as we use the same
units for mass throughout the problem.

It can be convenient to organize the CM calculation in a table where we start off with each object’s
mass and location, then add columns for mixi and miyi (and potentially mizi) terms that are
involved in the sums:

Object Mass X coordinate Y coordinate mixi miyi
i (grams) (meters) (meters)
1 10 0 0 0 0
2 2 1 0 2 0
3 5 0 3 0 15

Sum 17 −− −− 2 15

Collecting what we need:

• Xcm =
∑

(mixi)∑
mi

= 2 grams−meters
17 grams

= 0.1176 m

• Ycm =
∑

(miyi)∑
mi

= 15 grams−meters
17 grams

= 0.8824 m

The dotted lines in the figure represent x = 0.1176 m and y = 0.8824 m and the point where those
intersect is the location of the center of mass of this mobile. If we toss the mobile into the air, that
point will follow the usual point-mass parabolic equations of motion, with the little masses making
up the mobile rotating around that point.



Determine the CM of a thin rod of mass M and
length L.

Common mass-density symbols you may en-
counter:

• Mass/volume : ρ (what we typically think
of as ‘density’)

• Mass/area : σ (areal density: often used for
objects that are thin sheets of material)

• Mass/length : λ (linear density: often used
for long thin objects like string, wire, cable,
etc)

Let’s actually do this as an integral first. This object is basically a thin wire of mass M and length
L. We can find the X center of mass by breaking it up into tiny fragments of mass dm and summing
(integrating) the result.

We’ll be integrating along the X axis from x = 0 to x = L so we need to convert dm into dx but
the mass of a little fragment of length dx will be the mass/length of the wire times the little length
we’re dealing with: dm = (M/L)(dx) or dm = λdx

The integral for the X center of mass then becomes:

Xcm = 1
M

∫
xdm = 1

M

∫
x(λdx) = λ

M

∫ L

o
xdx

Let’s replace λ with M/L, and by now you’ve seen how to do simple polynomial integrals:
∫
xdx =

1
2
x2 evaluated at the limits:

Xcm = 1
M
(M
L
)(1

2
L2 − 1

2
(0)2) so

Xcm = 1
L
(1
2
L2).

Or finally: Xcm = L/2

For a uniform straight rod (wire, string, cable, ...) of length L, the center of mass will be right at
it’s midpoint : that is, right at it’s geometric center.

Let’s approach this in a very different way now that skips all the math.



Center of Mass from Symmetry arguments

Let’s take our wire segment and flip it around it’s
midpoint. If we claim that the CM is just to the
right of the center in the original orientation, it
should now be to the left of center in the flipped
copy of the wire. If the wire has the same density
everywhere though, we should get the same result
for the CM location when we do the integral for
either one of these copies of the wire. Thus the
CM can’t be where I marked it. The only place it
can be is right at the midpoint.

We can make the same sort of argument for many simple geometric shapes by looking for point,
lines, or planes about which the object is symmetric.

In the figure on the right, for example, the top left object is a cylinder and we’ve drawn a dotted
line along it’s axis. We can spin the cylinder about that axis and nothing changes: it’s the identical
cylinder, so the CM has to lie somewhere along that line. (If we move it radially outward, then the
CM would move as we rotate the cylinder about that axis and mathematically it can’t since the
original and rotated cylinders are identical.) Then we can use the same symmetry argument we
used for the wire so say the CM also has to lie midway between the two ends. The intersection of
that plane and the dotted line along the axis is a single point: the center of mass.

We won’t dwell too much on this now, but you’ll see much more of this in your statics and dynamics
classes where it’s used to drastically simplify some of the calculations involved.



CM of Composite Objects

Determine the CM of the thin L-shaped object shown
(called a ‘carpenter’s square’). Assume the den-
sity/area σ is constant throughout the material.

This L-shaped object has no lines or planes of symmetry.
The trick here is to recognize that this L-shaped object
is really made up of two simple rectangular sections, and
the CM of each of those separately is trivial since each
will be at their respective geometric centers. Let’s see
how we can use that idea to find the CM of the overall
object.

We should do this derivation as an integral, but it’s probably easier to follow if we treat the object
as an infinite number of infinitesimal point masses that we are summing over to find the center of
mass. In the X direction, we would do:

xcm =
∑

(mixi)
M

so:
∑

(mixi) = Mtotalxcm

That sum involves adding up the contributions of every point mass in the entire object, so let’s
split the sum up into two parts: the points that are in part A and those that are in part B:∑

(mixi) =
∑
A

(mixi) +
∑
B

(mixi)

BUT:
∑
A

(mixi) = MAxcm,A and
∑
B

(mixi) = MBxcm,B

Thus: Mtotalxcm = MAxcm,A +MBxcm,B or finally:

xcm =
MAxcm,A+MBxcm,B

Mtotal

What does that mean in words? If we have a ‘composite’
object that is made up of simpler geometric parts, we can
find the CM of each part, then treat those as point objects to
determine the overall CM of the object.

Let’s apply this process to our L-shaped object now, which we can divide into two rectangular
segments.



Part A here is a (100 cm)× (4 cm) rectangle, so
its CM will be at its geometric center: x = 50 cm
and y = 2 cm. Its mass will be its area times it’s
area-density, so MA = (100)(4)σ = 400σ

Part B here is a (4 cm)× (36 cm) rectangle (only
36 cm since the bottom 4 cm is in part A). Its
midpoint will be at x = 2 and in the Y direction
it’ll be at the Y midpoint of just that piece, so
will be 36/2 = 18 cm in from either end of B.
That puts the point 18 cm above the bottom of
B, which itself is 4 cm above the X axis, so the
actual Y coordinate of that point will be Y =
4+18 = 22 cm. And the mass of this part will be
(area)× (arealdensity) = (4)(36)σ = 144σ.

At this point we’ve effectively replaced the solid L-shape with just two points:

• Point A : x = 50 cm, y = 2 cm, and M = 400σ

• Point B : x = 2 cm, y = 22 cm, and M = 144σ

What is the center of mass of those two points, with those masses?

• Xcm =
∑

mixi∑
mi

= (400σ)(50 cm)+(144σ)(2 cm)
400σ+144σ

= 20000σ+288σ
544σ

= 37.29 cm

• Ycm =
∑

miyi∑
mi

= (400σ)(2 cm)+(144σ)(22 cm)
400σ+144σ

= 800σ+3168σ
544σ

= 7.29 cm

(That is the point where the two little dotted lines intersect in the figure.)



CM of Composite Objects (II)

Suppose we want to determine the CM of an object like
that shown on the right: a thin flat metal disk with a hole
punched in it.
Unlike the previous example, where we could create an ob-
ject from two simpler sections (with easy to find CM’s), here
we have a nice simple disk, with another simple shape cut
out of it.

The trick here is to note that we can create a complete disk by taking our object and ‘adding’ a
little disk of metal that fills in the missing part. Let’s call the ‘filled’ disk object A, and the little
disk we had to add will be called object B (with the thing we’re trying to solve for just called
‘Object’).

Calculating the CM involves
∑

mir⃗i (then dividing by the mass) so like before we can break the
sum for the full object (A) into two partial sums: a sum over the actual object (with the hole in it)
plus a sum of the patch (object B).

Rearranging the sums (and the pictures) gives us what we need.

r⃗CM,object =
MAr⃗CM,A−MBR⃗CM,B

MA−MB

In effect, it’s the ‘point mass’ version of the CM calculation, but where we’re treating the patch we
had to add as if it had a negative mass.


