
PH2213 : Examples from Chapter 9 : Linear Momentum

Key Concepts

Methods in this chapter give us tools for analyzing:

• collisions (pool balls, car wrecks, football tackle, etc)

• explosions (recoil)

• time-varying forces

Key Equations

Momentum of an object: p⃗ = mv⃗

Total momentum of a collection of objects P⃗ =
∑

p⃗i =
∑

miv⃗i

Total momentum is conserved in collisions/explosions (consequence of Newton’s third law)

In most collisions, some mechanical energy is lost. These are called inelastic collisions. The
maximum possible loss occurs in totally inelastic collisions where the two objects stick and
move off together after the collision. In very special cases, both momentum and mechanical energy
may be conserved, and those are called elastic collisions.

Restatement of Newton’s laws:
∑

F⃗ = dp⃗/dt or integrating both sides: p⃗2 = p⃗1 +
∫ 2
1 F⃗ dt

Impulse: J⃗ = ∆p⃗ (just a definition; J⃗ isn’t anything new, it’s just another name for ∆p⃗ )

Average net force acting: F⃗avg = ∆p⃗/∆t

Center of mass: r⃗cm = m1r⃗1+m2r⃗2+...
m1+m2+...

or r⃗cm =
∑

mir⃗i∑
mi

For a collection of interacting objects, all the internal forces cancel out in pairs, leaving
∑

F⃗ext =
Ma⃗cm (I.e. the external forces like gravity, etc, act on the collection as a whole. The collection’s
center of mass moves as if all the mass were located at a single point at the center of mass.)

Very specialized 1-D elastic collisions : (warning, this is not the norm...)

If one object is at rest, and is struck by a second object in a special way such that both momentum
and energy are conserved (i.e. a 1-D elastic collision where only one of the objects was initially
moving), we can derive some special equations for the velocities of the two objects after the collision.

We’ll label quantities here as ‘1’ (the object that was initially moving) and ‘2’ (the object that was
initially at rest). We’ll also use the subscript ‘i’ to represent the initial condition (i.e. just before
the collision) and ‘f’ the final condition (i.e. just after the collision). Then:

v1f = m1−m2

m1+m2
v1i and v2f = 2m1

m1+m2
v1i

Again, this only applies when the object labelled 2 was initially at rest, and when mechanical
energy is conserved in the collision. This is not the normal situation.



Common Errors

• momentum is conserved as a vector which means in 2 or 3-d collision, we may need to break
the CoM equations into separate x, y, (and z) components

• mechanical energy is rarely conserved during collisions

• if a collision is present, break the problem into steps where we can focus just on the collision,
where we can only count on momentum being conserved. Other methods (work, energy, CoE,
etc) are available up to the point of the collision, and are again available AFTER the collision;
just NOT DURING the collision itself.

• Average force: F⃗avg = ∆p⃗/∆t is a vector equation that let’s us compute what average force
must have been acting on an object when that object changes its momentum suddenly as
a result of a collision



1. 1-D Momentum Example : Firing a gun on a frictionless surface

Suppose a hunter is standing on a completely frictionless
surface (µ = 0). He aims to the left and fires the gun.
What happens to him?
Momentum is always conserved. Initially nothing is moving,
but after the bullet is fired, we have a (small) mass travelling
to the left with some (high) velocity, so the person must
recoil in the opposite direction at some speed.

Suppose the person has a mass of 100 kg, the bullet has a mass of 10 gm (0.01 kg), and flies
away at an initial speed of 1000 m/s.

During the tiny ∆t of the firing, this is 1-D motion, so we’ll define a coordinate axis with the
+X direction being horizontal and heading off to the right.

Momentum is conserved as a vector, but at the instant of the firing, everything is happening
in the X direction, so we’ll just focus on the X components of everything here.

Initially, the total momentum is zero (nothing is moving).

Immediately after the firing, we have the bullet of mass 0.01 kg moving to the left at a speed
of 1000 m/s, and the hunter has a mass of 100 kg and will be moving with some velocity V .

The total momentum immediately after the firing is:
∑

mivi = (0.01 kg)(−1000 m/s) +
(100.0 kg)(V )

This must equal the total initial momentum (which was zero), so conservation of momentum
requires that (0.01 kg)(−1000 m/s) + (100.0 kg)(V ) = 0.0 or −10 + 100V = 0 so V =
+0.10 m/s.

After firing the gun, the hunter must be sliding to the right across this frictionless surface at
a speed of 10 cm/s.

Energy : Let’s look at the energy before and after the firing. Focusing on the tiny ∆t
of the firing itself, nothing is changing in the Y direction (yet), so we have no change in
gravitational potential energy. Initially, nothing is moving, so our initial kinetic energy is
zero. Work-energy says that the total kinetic energy after will equal the total kinetic energy
before , plus any works done: Kafter = Kbefore +

∑
W . After the firing, we have two moving

objects. The bullet has K = 1
2
mv2 = (0.5)(0.01)(1000)2 = 5000 J , and the shooter has K =

1
2
mv2 = (0.5)(100)(0.1)2 = 0.5 J so work-energy requires that (500 J) + (0.5 J) =

∑
W or

the explosion of the powder inside the bullet must have provided 500.5 J of energy. (Actually
more, since some energy would have been converted into friction and heat.)

Summary : As we will see as we go through these examples, momentum is always
conserved, butmechanical energy is usually not conserved. In the case of a collision,
some mechanical energy is often ‘lost’ (converted into heat, for example).



2. 1-D Momentum Example : bullet into block of wood

Suppose we have a 1 gm bullet moving at 1000 m/s that
enters a 2 kg block of wood that is sitting on a frictionless
surface, initially at rest. The bullet embeds itself in the
wood. What happens? How does the block move after this
collision? How much mechanical energy was lost in this
collision?
As in the previous example, although momentum is conserved as a vector, here everything
is happening horizontally, so let’s call that the X direction, with +X pointing to the right.
Applying conservation of momentum in the X direction:

Total momentum before the collision:
∑

mivi = (0.001 kg)(1000 m/s) + (2.0 kg)(0) =
1 kg m/s.

Total momentum after the collision: we now have a single object, formed from the block
of wood plus the bullet, so it has a mass of 2.001 kg now. After the collision, it will be
moving with some velocity V , so the total momentum immediately after the collision will be∑

mivi = (2.001 kg)(V ).

Momentum is conserved, so the total momentum before the collision must equal the total
momentum after the collision: 1 kg m/s = (2.001 kg)(V ) or V = (1/2.001) m/s or V =
0.49975 m/s.

Quite a lot of energy is often lost in collisions. Let’s look at the total mechanical energy before
and after this collision.

Initially we have the kinetic energy of the bullet: K = 1
2
mv2 = (0.5)(0.001 kg)(1000 m/s)2 =

500 J . The block is not moving yet, so has no kinetic energy. Our total mechanical energy
just before the collision is 500 J . (No springs here; nothing is changing elevation, so no Ug

either.)

Immediately after the collision, we have the 2.001 kg object moving at 0.49975 m/s and that
represents a kinetic energy of K = 1

2
mv2 = (0.5)(2.001)(0.49975)2 = 0.25 J .

So we went from 500 J to only 0.25 J of mechanical energy here: a loss of 499.75 J which is
a 99.95 percent loss. Where does this energy go? The friction of the bullet with the wood,
slowing it to a stop, probably converted most of it to heat.

Summary : As we will see as we go through these examples, momentum is always
conserved, but mechanical energy is usually not conserved. In the case of a colli-
sion, some (maybe most) of the mechanical energy is often ‘lost’ (converted into heat,
for example).



3. 1-D Momentum Example : boxes and spring

Suppose we push two boxes together with a spring between
them, then let them go. (Frictionless floor, of course.) Let’s
say that we have a 1 kg box on the left, and a 2 kg box on
the right. The spring is storing some amount of energy (we
don’t know how much yet) but we do observe that when we
let the boxes go, the lighter block goes flying off to the left
at 10 m/s. What happens to the heavier block? How much
energy must have been stored in the spring initially?

Momentum is conserved as a vector. Here, everything is happening horizontally, so we’ll call
that the X direction, with +X pointing to the right. Looking at conservation of momentum
in the X direction then:

Momentum before the ‘event’ (the releasing of the boxes): nothing is moving, so
∑

mivi = 0
at this point.

Momentum after the event: we have the 1 kg box moving at 10 m/s to the left, and the
2 kg box moving at some velocity V , so the total X momentum at this point is:

∑
mivi =

(1 kg)(−10 m/s) + (2 kg)(V ).

Momentum is conserved, so the total momentum before the collision must equal the total
momentum after the collision: 0 = (1)(−10) + (2)(V ) or V = +5 m/s. It has a positive
velocity, so the heavier block must now be moving off to the right at 5 m/s.

Energy :

Initially, we have some energy stored in the spring.

After the spring releases this energy and the blocks are flying apart, we have mechanical
energy in the form of the two moving boxes: Kafter =

∑ 1
2
miv

2
i = 1

2
(1 kg)(10 m/s)2 +

1
2
(2 kg)(5 m/s)2 = 50J + 25J = 75 J . This is the amount of energy that must have been

stored in the spring initially.

Summary : When we have something like a spring involved in our momentum cal-
culations, momentum is conserved as usual, but mechanical energy is as well since
the two objects never actually collide with one another. In chemical explosions (dy-
namite, bullet, etc), that energy would be initially stored in the chemicals themselves
and is released in some (usually very fast) reaction. That chemical energy isn’t part
of our ‘mechanical energy’ definition (E = K +Ug +Us), it’s part of the ‘other work’
term in the conservation of energy equation.



4. 1-D Momentum Example : Pool Ball Collision (Elastic)

Note : these pool-balls are special frictionless versions that are not rotating - they’re just
idealized point masses that have mass and velocity. We’ll get to real rotating objects in the
next chapter.

Suppose I shoot the cue ball at 10 m/s directly at a station-
ary ball and I observe that after the collision, the pool ball
has come to a stop and the other ball is now moving off to
the right at some velocity V . How fast is it moving? Look
at the mechanical energy before and after this collision.
Typical pool balls have masses of 0.16 kg.

Momentum is conserved as a vector. Here, everything is happening in the X direction, so we’ll
just focus on the X components of momentum.

Total momentum before collision:
∑

mivi = (0.17 kg)(10 m/s) + (0.17 kg)(0) = 1.7 kg m/s

Total momentum after collision:
∑

mivi = (0.17 kg)(0 m/s) + (0.17 kg)(V ).

Momentum is conserved, so 1, 7 = 0.17V or V = 10 m/s. Apparently ball B must be moving
off with the same speed as the incoming cue ball had.

Let’s look at the total mechanical energy before and after this collision:∑
Kbefore =

1
2
(0.17)(10)2 + 0 = 8.5 J∑

Kafter = 0 + 1
2
(0.17)(10)2 = 8.5 J also.

Summary : These types of collisions are referred to as elastic collisions : momen-
tum is conserved (like always) and energy is conserved. This sometimes happens with
collisions between very solid objects that do not deform, or when something slides
into a spring. Elastic collisions are not the normal situation for most real-world
colliding objects. Some energy is almost always lost, so unless specifically noted we
can’t normally assume that energy will be conserved in collision problems.



5. 1-D Momentum Example : Pool Ball Collision (Inelastic)

Let’s alter the previous example. Suppose that after the
collision, we observe ball B moving off to the right at 8 m/s.
What must have happened to the cue ball? Look at the
mechanical energy in this case too.

Momentum is conserved as a vector. Here, everything is happening in the X direction, so we’ll
just focus on the X components of momentum.

Total momentum before collision:
∑

mivi = (0.17)(10) + (0.17)(0) = 1.7 kg m/s

Total momentum after the collision: well, ball B is moving more slowly now, so it only has a
momentum of mv = (0.17)(8) = 1.36 kg m/s, which is less than the 1.7 kg m/s of momentum
we had initially. This ‘leftover’ momentum must be being carried away by the cue ball, so it
has some velocity V after the collision. The total momentum after the collision then must be∑

mivi = (0.17 kg)(V ) + (0.17 kg)(8 m/s) = 1.36 + 0.17V .

Momentum is conserved, so the total momentum after the collision must equal the total
momentum before the collision: 1.36 + 0.17V = 1.7 or V = +2.0 m/s. The cue ball must be
travelling to the right (following the other ball) at a speed of 2 m/s.

Let’s look at the total mechanical energy before and after this collision.∑
Kbefore =

1
2
(0.17)(10)2 + 0 = 8.5 J∑

Kafter =
1
2
(0.17)(2)2 + 1

2
(.17)(8)2 = 0.34J + 5.44J = 5.78J

In this collision, 32% of the initial mechanical energy was ‘lost’ (and would have gone into
heat probably).

Summary : We apparently lost some energy in this collision. This is the more
common case with collisions, and these are called inelastic collisions : momentum
is conserved (as always), but some (and sometimes near all) of the mechanical energy
is lost (often being converted into heat).



6. 1-D Momentum Example : Totally Inelastic Collision

Let’s modify our previous examples so that the pool balls
are covered with Velcro or super-glue causing them to stick
together during the collision, and move off as a single object.
How fast does the combined object move after the collision?
How much energy is lost now?

Total momentum before the collision:
∑

mivi = (0.17)(10) + (0.17)(0) = 1.7 kg m/s

Total momentum after the collision: now we have a single blob of mass 0.17 + 0.17 = 0.34 kg
moving at some velocity V :

∑
mivi = (0.34 kg)(V ).

Momentum is conserved, so 1.7 kg m/s = (0.34 kg)(V ) or V = 5 m/s.

Let’s look at the total mechanical energy before and after this collision.∑
Kbefore =

1
2
(0.17)(10)2 + 0 = 8.5 J∑

Kafter =
1
2
(0.34)(5)2 = 4.25J

Compared to the previous examples, in this collision, 50% of the initial mechanical energy
was ‘lost’ (and would have gone into heat probably).

Summary : It turns out this ‘sticking together’ scenario is the one where the largest
possible amount of energy gets lost, and it is referred to as a totally inelastic
collision.



7. 1-D Momentum Example : Impossible Collision

We have our same pool-ball collision event happening here,
but suppose we see ball B moving off at 11 m/s to the right.
What must have happened to ball A? Look at energy in this
case too.

Total momentum before the collision:
∑

mivi = (0.17)(10) + (0.17)(0) = 1.7 kg m/s

Total momentum after the collision: we have ball B moving to the right at 11 m/s and ball
A moving at some velocity V , so:

∑
mivi = (0.17)(V ) + (0.17)(11) = 0.17V + 1.87 kg m/s.

Momentum is conserved, so 1.7 kg m/s = (0.17 kg)(V ) + (1.87 kg m/s) or V = −1 m/s.

Allegedly, the cue ball has bounced backwards, and is now moving at 1 m/s to the left.

Is this possible though?

Let’s look at the total mechanical energy before and after this collision.

•
∑

Kbefore =
1
2
(0.17)(10)2 + 0 = 8.5 J

•
∑

Kafter =
1
2
(0.17)(1)2 + 1

2
(0.17)(11)2 = 0.085J + 10.285J = 10.37 J .

That is more energy than what we started with though, so this collision is impossible unless
we have some source of energy hiding in the problem. That’s possible: maybe we have a little
blasting cap between them, or we’ve coated them with a chemical that explodes on contact.
Unless we have some source of this energy, though, this scenario is not possible and the original
statement of the problem is bogus - there’s no way that ball B can move off at 11 m/s unless
we have some hidden source of energy.



8. 1-D Momentum Example : Elastic Collision 1

If one object is at rest, and is struck by a second object in a special way such that both
momentum and energy are conserved (i.e. a 1-D elastic collision where only one of the object
was initially moving), we can derive some special equations for the velocities of the two objects
after the collision.

We’ll label quantities here as ‘1’ (the object that was initially moving) and ‘2’ (the object
that was initially at rest). We’ll also use the subscript ‘i’ to represent the initial condition
(i.e. just before the collision) and ‘f’ the final condition (i.e. just after the collision). Then:

v1f = m1−m2

m1+m2
v1i and v2f = 2m1

m1+m2
v1i

Note that no matter what the masses are, the initially stationary object will move off in the
same direction that object 1 came in with, but object 1 has more options: it might continue
forward, bounce back, or come to a stop, depending on the value of m1 −m2.

Example: moving pool ball (m1 = 0.17 kg, and v1i = 10 m/s) hits a stationary bowling ball
(m2 = 6 kg). (Actually the mass of bowling balls is quite variable, but 6 kg appears to be in
the middle of the normal range.)

Then after the collision, the pool ball will have a velocity of:

v1f = m1−m2

m1+m2
v1i =

0.17−6
0.17+6

(10 m/s) = −9.45 m/s

That’s negative, so the pool ball has bounced back with almost the same speed it came in
with.

The bowling ball, after the collision, will have a velocity of:

v2f = 2m1

m1+m2
v1i =

2×0.17
0.17+6

(10 m/s) = 0.55 m/s

and will thus be moving (slowly) forward (in the same direction that the incoming pool ball
original had).

Summary : Be very careful using these equations. They require that both energy
and momentum be conserved in the collision, which is not the normal real-world
situation.



9. 1-D Momentum Example : Elastic Collision 2

Suppose we drop a metal ball bearing onto a metal floor and that the collision conserves
energy as well as momentum (i.e. assume we do have that rare case of an elastic collision
occurring here). How fast will be ball bearing be moving after the event? How is momentum
being conserved here?

Suppose the ball bearing has a mass of m = 0.001 kg and
hits the floor with v = 10 m/s. Basically, the ball bearing
is ‘colliding’ with the Earth and bouncing off it. We’ll use
a coordinate system with +Y pointing upward. Using the
specialized 1-D elastic collision equations from the previous
problem, m1 = 0.001 kg, v1i = −10 m/s, and m2 = 6 ×
1024 kg .

v1f = m1−m2

m1+m2
v1i =

0.001−6E24
0.001+6E24

(−10 m/s) = +9.9999999.... m/s.

v2f = 2m1

m1+m2
v1i =

2×0.001
0.17+6E24

(−10 m/s) = −3.33× 10−27 m/s.

To about 27 significant figures, the ball bearing appears to have bounced back with the same
speed it hit the ground with (the factor is very, very slightly less than 1, but is so close to 1
that we’d never be able to measure the difference). And the velocity of the earth after the
collision is so tiny that we’d never be able to measure that either.

In order for the Earth to have a significant velocity after the collision, the mass of the incoming
object would need to be a significant fraction of the mass of the earth (or be moving incredibly
fast: maybe a really big, fast asteroid...).

Summary : when one of the objects involved in a collision is hugely more massive
than the other, momentum is still conserved, but the calculations may require so
many decimal places that a typical calculator may not be accurate enough. And
since in most collisions some unknown amount of energy gets lost too, none of the
methods we’ve covered so far is of much use.



10. Average Force : colliding pool balls

Let’s go back to our earlier example where the cue ball struck a stationary ball, with the
result that the cue ball came to a stop and the other ball moved off.

We generalized Newton’s Laws and showed that we can relate a change in momentum to
an average force: F⃗avg = ∆p⃗/∆t. The incoming cue ball had an initial X momentum of
mv = (0.17 kg)(10 m/s) = 1.7 kg m/s and a final X momentum of zero (it came to a stop).
Collisions between pool balls happen very rapidly. Using a very high speed camera, it’s found
that the collision itself takes place in about 0.0006 s (i.e. 0.6 milliseconds). How much force
did the cue ball ‘feel’ during this collision?

This is all 1-D motion in just the X direction, so we’ll drop the vectorness:

Favg = ∆p/∆t = 0−1.7 kg m/s
0.0006 s

= −2833 N .

Compare this to the weight of the pool ball, or the normal force between the ball and the
surface of the table: mg = (0.17 kg)(9.81 m/s2) = 1.67 N . The force between the balls during
the collision is about 1700 times larger than any of the other forces acting.

Alternate Solution

We can find the force the old fashioned way too, using Newton’s Laws and equations of
motion. If we assume a constant acceleration, the cue ball is going from an initial velocity of
v = +10 m/s to a final velocity of 0 m/s in the given time interval, so we could use v = vo+at
to find the acceleration: (0) = (10) + (a)(0.0006) or a = −16, 667 m/s2. The force needed to
create this acceleration would be F = ma = (0.17 kg)(−16, 667 m/s2) = −2833 N .

Summary : The contact forces involved in most collisions are much larger than
any other forces present, so during a collision we can generally completely ignore
everything else and just focus on the collision : i.e. just focus on the conservation
of momentum that is occurring during the collision. They occur so fast, that we can
ignore everything else. When we have problems where objects are moving, sliding
up or down ramps, for example, and then a collision happens, we can (and should)
break the problem into parts and during the instant that the collision occurs, we just
worry about conservation of momentum and ignore any other effects. Gravity and
friction and other forces are still present, but the forces implied by the collision itself
just overwhelm everything else during that brief time interval.



11. Average Force : car and truck colliding

Suppose we have a car with a mass of 1000 kg (in-
cluding the driver) that is moving to the right at
10m/s, and a 2000 kg truck (including the driver)
moving to the left at 10 m/s. They collide, with
the collision taking about 0.1 s. Assume this col-
lision is completely inelastic (i.e. the two vehicles
‘merge’ and become essentially a single object of
mass 3000 kg. What is the speed of the wreck
immediately after the collision (before friction or
anything else starts to act to slow it down)? If
the drivers of each vehicle has masses of 100 kg,
how much force will the car driver feel? The truck
driver?

This is a 1-D collision, so we’ll have a +X axis pointing to the right and just worry about the
X components of momentum.

Total momentum before collision:
∑

mivi = (1000 kg)(10 m/s) + (2000 kg)(−10 m/s) =
−10, 000 kg m/s.

Total momentum after collision: now we have the single 3000 kg wreck moving off at some
velocity V , so:

∑
mivi = (3000 kg)(V ).

Momentum is conserved, so −10000 kg m/s = (3000 kg)(V ) or V = −3.33 m/s. The wreck
is apparently moving off to the left, immediately after the collision occurs.

Let’s look at the force that each driver will feel during the collision.

Car Driver : The driver of the car is initially moving to the right at 10 m/s but immediately
after the collision is moving at 3.33 m/s to the left. This represents a change in momentum
of ∆p = pafter − pbefore = (100 kg)(−3.33 m/s) − (100 kg)(10 m/s) = −333 − 1000 =
−1, 333 kg m/s. This change occurs in a time interval of 0.1 s, so represents an average force
of Favg = ∆p/∆t = (−1, 333 kg m/s)/(0.1 s) = −13, 333 N . F = ma so we can get an idea
of what acceleration the driver is undergoing during the crash: −13, 333 N = (100 kg)(a) or
a = −133 m/s2 or about 13g′s.

Truck Driver : The driver of the truck is initially moving to the left at 10 m/s and imme-
diately after the collision is moving at 3.33 m/s, still to the left. This represents a change
in momentum of: ∆p = pafter − pbefore = (100 kg)(−3.33 m/s) − (100 kg)(−10 m/s) =
−333 + 1000 = +667 kg m/s. This change occurs in a time interval of 0.1 s, so represents an
average force of Favg = ∆p/∆t = (+667 kg m/s)/(0.1 s) = +6670 N . F = ma so we can get
an idea of what acceleration the driver is undergoing during the crash: +6670 N = (100 kg)(a)
or a = +67 m/s2 or about 6.7g′s : half of what the car driver experienced, in this case.



12. Conservation of Momentum : Ballistic Pendulum

Suppose we hang a 1 kg block of wood from the ceiling
on a 1 m long string. A 5 gm (0.005 kg) bullet comes in
from the left at 300 m/s and embeds itself into the block.
What happens? Conservation of momentum occurs dur-
ing the collision, so immediately after the collision the
combined block and bullet ‘object’ will be moving to the
right with some speed. That means it has some kinetic
energy at that point, and we earlier looked at the pendu-
lum problem: if it’s moving at some speed at the bottom,
how does that relate to the angle it will swing out to?

First, let’s focus on the collision. It occurs in a tiny ∆t and we can ignore everything else and
just worry about conservation of momentum.

This is basically a 1-D collision in the X direction. The total momentum before the collision
is

∑
mivi = (0.005 kg)(300 m/s) + (1.0 kg)(0) = 1.5 kg m/s.

Immediately after the collision, we have a combined 1.005 kg object moving at some velocity
V , so

∑
mivi = (1.005 kg)(V ).

Momentum is conserved, so 1.5 = 1.005V or V = 1.4925 m/s.

Refer to the pendulum example from chapter 6 or 7. We found that the velocity at the
bottom was related to the angle θ the pendulum will swing out to via: v2 = 2gL(1 − cos θ).

Rearranging this somewhat: v2/(2gL) = 1− cos θ or cos θ = 1− v2/(2gL) .

Using the numerical values we have here: cos θ = 1− 1.49252

(2)(9.81)(1)
= 1.0− 0.1135 = 0.8865 from

which θ = 27.6o.

The faster the bullet is going, the larger
this angle will be, but since V enters as it-
self squared and we have to do an inverse
cosine to find the angle, the relationship
between the incoming speed and the final
angle is not linear (although it’s pretty sur-
prisingly close for a while...)

In the figure, we vary the incoming bul-
let speed, do the computations above, and
compute the final angle the pendulum will
swing out to. (If the final angle exceeds 90
degrees, the ‘cable’ will need to be able to
support a negative value of tension, which
means it needs to be a solid rod or stick or
something, not a rope or string.)



13. Conservation of Momentum : 2-D car accident

Suppose car A has a mass of 1000 kg and is travelling to the
east at 20 m/s, and car B (a truck) has a mass of 2000 kg
and is travelling at 15 m/s to the north. They both enter an
intersection together and collide, forming a combined wreck
that moves off at some velocity. Find this speed and the
angle the wreck moves off with.

Momentum is conserved as a vector, and we have things occurring in 2 dimensions now, so
we’ll need to separately look at the X and Y components.

After the accident, the (combined) wreck is moving off at some velocity V that has components
Vx and Vy.

Conservation of momentum in the X direction :
∑

mivxi is the same before and after the
collision. Before the collision, we have the car moving in the X direction, but the truck has no
X component of velocity (and thus no X component of momentum). Thus before the collision:∑

px = (1000 kg)(+20 m/s) + 0 = 20, 000 kg m/s.

After the collision, the X component of momentum will be
∑

px = (3000 kg)(Vx).

This must equal the X component of momentum before the collision though, so (3000 kg)(Vx) =
(20, 000 kg m/s) or Vx = 6.67 m/s.

Conservation of momentum in the Y direction :
∑

mivyi is the same before and after the
collision. Before the collision, we have the car moving in the X direction, so it has no Y
momentum. The truck is moving north, so it’s momentum is entirely in the Y direction. Thus
before the collision:

∑
py = (1000 kg)(0 m/s) + (2000 kg)(15 m/s) = 30, 000 kg m/s.

After the collision, the Y component of momentum will be
∑

py = (3000 kg)(Vy).

This must equal the Y component of momentum before the collision though, so (3000 kg)(Vy) =
(30, 000 kg m/s) or Vy = 10.00 m/s.

We now have the two components of the velocity the wreck has immediately after the collision.
The overall magnitude of this velocity is V =

√
V 2
x + V 2

y =
√
44.44 + 100 = 12 m/s and it

will have an angle of tan θ = Vy/Vx = 10/6.67 = 1.5 from which θ = 56.3o.

Energy Loss : Before the collision, we have two moving objects with a total kinetic energy
of 1

2
(1000 kg)(20 m/s)2 + 1

2
(2000 kg)(15 m/s)2 = 200, 000J + 225, 000J = 425, 000 J .

After the collision, we have the single combined object moving at the speed we just determined,
so the kinetic energy present right after the collision is 1

2
(3000 kg)(12 m/s)2 = 216, 000 J .

Roughly half the incoming energy was ‘lost’ in the collision (going into heat, deforming the
vehicles, etc).



14. Golf-ball Launch

(NOTE: too many moving parts here for something like this to be on a test, but it’s a good
example of applying the methods we have to a real-world scenario.)

Let’s look at the collision represented by a golf club striking and launching a golf ball. We
observe that the ball lands 100 m away from where it was hit, and that the ball was launched
into the air at an angle of 45 degrees above the horizontal, and would like to get an idea of
how fast the club head must have been moving when it struck the ball to achieve this
result.

To simplify things, let’s assume we have a 1D collision: that is, the club is moving in some
direction and right after the collision the club and the ball are still moving along the same
direction.

When the club strikes the stationary ball, momentum will be conserved. With real golf balls,
mechanical energy won’t be conserved (in fact there is a material property called the coefficient
of restitution that is related to the fraction of the energy lost that is specified for official balls).

In this version of the problem, let’s assume that energy is conserved though.

So: for the collision part of the problem, we’ll assume that we have a 1-D elastic collision.

Suppose we observe that the ball is launched at a 45 degree angle and is observed to land
100 m away from it’s launch point. Then: how fast must the club head have been moving to
produce this result?

Some random data we’ll use: let the club head have a mass of 0.5 kg and the ball have a mass
of 0.05 kg. (These aren’t quite right for the real objects, but close enough.) And we also
know how far the ball travelled (100 m) and it’s launch angle relative to the horizontal (45o).

We’ll label the club with subscript ‘c’ and the ball with ‘b’ and properties just after the
collision will have a prime symbol. For example, vc would be the velocity of the club head
before the collision, and v′c would be it’s velocity just after the collision.

The collision: we have the club head moving at vc striking the ball which is as rest. Just after
the collision, the club head will be moving at v′c and the ball at v′b.

Conservation of momentum in this rotated x direction:∑
(mvx)before =

∑
(mvx)after or: (0.5)(vc)) + (0.05)(0) = (0.5)(v′c) + (0.05)(v′b)

Multiplying this equation by two yields: vc = v′c + 0.1v′b

Conservation of energy

(Remember, mechanical energy is normally not conserved during collision; so this assumption
is probably not valid...)



From other examples we’ve done, the collision occurs so rapidly that the force related to the
collsion will be much larger than any other forces present, so we can ignore any minute
changes in potential energies or any ‘other work’ during the collision. CoE basically simplifies
to Kbefore = Kafter where K is the total mechanical energy of the objects involved.

Here then: 1
2
(0.5 kg)(vc)

2 + 0 = 1
2
(0.5 kg)(v′c)

2 + 1
2
(0.05)(v′b)

2

Multiplying this equation by 4 yields:

(vc)
2 = (v′c)

2 + 0.1(v′b)
2

We now have two equations, but three unknowns but we can use the information we know
about the post-collision flight path to eliminate one of them:

We know how far the ball travels so we can go back to one of our projectile motion equations
from chapter 3. If an object is launched at some initial speed and angle, it will land this far
away: R = (v2o sin (2θ)/g

Here, we know the range R = 100 m and the angle was 45 degrees, so 100 = (v2o sin 90)/9.8
from which vo = 31.3 m/s.

This is what we’ve been calling v′b (the speed of the golf ball right after the collision with the

club), so we now know that v′b = 31.3 .

Making this substitution in the earlier boxed equations, we have:
vc = v′c + 3.13, and
(vc)

2 = (v′c)
2 + 97.969

Replacing vc in the second equation using the expression in the first equation:

(v′c + 3.13)2 = (v′c)
2 + 97.969

Expanding out the first term:
(v′c)

2 + 6.26v′c + 9.7969 = (v′c)
2 + 97.969

Note that we have exactly the same squared term on each side, so we can cancel that out,
leaving:

6.26v′c + 9.7969 = 97.969 from which v′c = 14.085 m/s

That’s the velocity of the club just after the collision but CoM connected that velocity to the
velocity of the club just before the collision: vc = v′c + 3.13 = 14.085 + 3.13 = 17.2 m/s.

The club head must have been moving at 17.2 m/s (about 38 miles/hr) when it struck the

ball.

That’s not an unreasonable result, despite all our assumptions. From what I’ve found, a
professional golfer might hit the ball with a club-head speed up to 100 miles/hr (resulting in
an even longer range for the ball).



15. Center of Mass
The object in the figure is constructed from three tiny
dense objects, connected by strong by massless rods
(which means that all the mass is concentrated at the
three points shown). Find the center of mass of the ob-
ject.

(Ignore that dotted line AB for now - we’ll come back to
this when we talk about rotation and moments of inertia.)

Center of mass (and later moment of inertia) calculations involve summing products, and it
is convenient to organize these into a table:

i mi xi yi mixi miyi
1 3 1 -1 3 -3
2 5 -2 1 -10 5
3 10 0 3 0 30∑

mi = 18
∑

mixi = −7
∑

miyi = 32

Adding the appropriate columns:

M =
∑

mi = 3 + 5 + 10 = 18 kg∑
mixi = 3− 10 + 0 = −7 kg m∑
miyi = −3 + 5 + 30 = 32 kg m

Xcm = 1
M

∑
mixi =

1
18
(−7) = −0.389 m

Ycm = 1
M

∑
miyi =

1
18
(32) = 1.78 m

If we toss this object in the air, it may tumble and spin around, but the center of mass point
will move through the air in a parabola exactly according to our 2D equations of motion.



16. Center of Mass for a Composite Object (1)

Due to the way the center of mass is defined, we can break the sum into partial sums that
represent the different ’parts’ of an object and combine those parts as if we replaced each part
with a point mass located at that part’s center of mass.

Suppose we have the T-square shown in the figure.
Where is it’s center of mass? The object is made of thin
flat metal that is 1 mm (0.001 m) thick with a density of
ρ = 10, 000 kg/m3 (which is a typical density for metals).

For a rectangle of uniform density, the center of mass is right at its geometric center, so we
can think of this object as two rectangles, A and B. We can find the mass and center of mass
of each rectangle, and then use the Center of Mass formula to find the CM of the composite
object.

Object A : this rectangle is 46 cm long and 4 cm wide so
its CM will be at x = 23 cm, y = 0 cm. What is it’s mass?
It’s volume will be V = (0.46 m)(0.04 m)(0.001 m) =
1.84 × 10−5 m3 so its mass will be m = ρV =
(10, 000 kg/m3)(1.84× 10−5m3) = 0.184 kg.

Object B : this rectangle is 50 cm tall and 4 cm wide.
It’s CM will be at its geometric center which means to get
to the X coordinate of the CM we need to shift 46 cm to
the right and then another 2 cm to the right so x = 48 cm
and y = 0 cm. What is the mass of this part? It’s volume
will be V = (0.50 m)(0.04 m)(0.001 m) = 2.00×10−5 m3

so its mass will be m = ρV = (10, 000 kg/m3)(2.00 ×
10−5 m3) = 0.200 kg.

(continued)



Center of Mass : Xcm = 1
M

∑
mixi where this sum now just has two terms since we’ve

replaced each of our two rectangles with point masses located at their corresponding centers
of mass. We have a 0.184 kg point-mass located at x = 0.23 m, y = 0 m and a 0.200 kg
point-mass located at x = 0.48 m, y = 0 m.

M in the CM equation is the total mass of the object so M = 0.184 + 0.200 = 0.384 kg.

Xcm = 1
0.384 kg

( (0.184 kg)(0.23 m) + (0.200 kg)(0.48 m) ) = 0.3602 m or Xcm = 36.02 cm.

Each of the two parts had their centers of mass at y = 0
so the corresponding Ycm calculation will just end up with
Ycm = 0.
The center of mass of this object then will be about where
the mark is shown on the figure.



17. Center of Mass for a Composite Object (2) Due to the way the center of mass is defined,
we can break the sum into partial sums that represent the different ’parts’ of an object and
combine those parts as if we replaced each part with a point mass located at that part’s center
of mass. We can use this same process to compute the CM of objects with holes cut in them.

Suppose we want to determine the center of mass of a flat disk with a circular hole cut out.
The CM of a uniform disk will be right at its geometric center. We can think of a solid disk
as being constructed from two parts: the disk with a hole in it (which is what we’re interested
in) plus a small disk that would just fill in that hole. We can break the sum (or integral) over
the whole object into a sum over just the part we’re interested in, plus the part that fills the
hole.

Suppose the outer disk as a radius of 1 meter and the hole is a disk with a radius of 20 cm
whose center is located 50 cm out from the center of the big disk. Assume the disk is made of
thin metal with a density of σ = 10 kg/m2 (that’s mass per area, not mass per volume; the
symbol σ is often used to represent this type of ’density’).

The mass of the complete disk (without a hole) will be its area times the mass/area so
M = (πr2)σ = (3.14159..)(1.00 m)2 × (10 kg/m2) = 31.415 kg.

The mass of part B (the plug that will fit in the hole) will be mb = σ(πr2) = (10 kg/m2) ×
π(0.20 m)2 = 1.257 kg.

That means the part we are interested in (the disk with the hole cut in it) will have a mass
of ma = 31.415− 1.257 = 30.158 kg.

The center of mass is defined as xcm = 1
M

∑
mixi. Like we did in the previous problem, for

a composite object, we can break it up into two (or more) parts where each part has been
replaced by a point mass of the same mass, located at the center of mass of that part.

So the center of mass of the overall (filled) object can be
written as Xcm = 1

M
(maxa + mbxb) where M is the total

mass (31.415 kg), ma is the mass of part A (30.158 kg) lo-
cated at the center of mass of part A xa (which we do not
know, so it remains a variable), mb is the mass of part B
(1.257 kg) located at its center of mass (x = 0.50 m). BUT
the center of mass of the (filled) object is at the origin, so
0 = 1

31.415 kg
× ( (30.158xa + 1.257 ∗ 0.50) ) which becomes just

algebra: 0 = 31.158xa +0.6285 or xa = −0.0202 m. Apparently
the center of mass of the thing with the hole in it (object A) is
about 2 cm to the left of the center of the outer disk (marked
with a little X in the figure).



18. Bat-turn

In this example we’ll look at a stunt in one of the Batman movies that the Mythbusters show
tried to replicate. A car (the batmobile) is travelling down a street and desires to make a high-
speed, right-angle turn. The car basically needs to travel along a tight circular arc taking it
from one street into another, perpendicular street as shown in the top figure. Circular motion
implies a radial acceleration of ac = v2/r which from Newton’s laws would require a radial
force of F = ma = mv2/r.

If m = 1000 kg, v = 30 m/s and r = 10 m, this implies a force of
F = (1000)(30)2/10 = 90, 000 N . Normally, cars make turns like this (at
lower speeds) via the static friction between their tires and the road, but
the maximum amount of static friction available would be fs,max = µsFN .
If the road is flat and horizontal (i.e. not banked), FN = mg = 9800 N
here so if we set the force we need equal to the force we have, we can
determine what µs we’ll need: Fneed = 90000 = Fhave = 9800µs which
implies we’d need a µs of 9.2 or higher to be able to make this high speed
turn. Typically, car tires have a µs of about 1 so it’s unlikely that even
the ‘bat-tires’ would be able to make a turn like this.
The ‘solution’ (in the movie) was for the car to fire a grappling hook at a
fire hydrant or lamp post on the corner, and then the tension in the cable
would provide the force needed to make the turn. For the Mythbusters
episode, they purchased steel cable sufficient to provide more than this
tension without breaking but were unsuccessful: the cable continued to
break.
What went wrong here?

Realistically, the cable isn’t actually taught (isn’t providing any tension)
when it’s first fired. By the time it does go taught, the car has continued
past the desired point. Then suddenly, the car’s momentum switches
from it’s original direction to a direction implied by the circle of radius
equal to the cable length. This implies that we have a sudden change
in momentum that occurs very rapidly, and we should compute the force
involved a different way: F⃗avg = ∆p⃗/∆t.

Once the car’s direction has changed and is now moving along the circular path, the 90, 000 N
of tension in the cable will provide the force needed, but during the tiny ∆t of the transition
(the ‘collision’), it may need to provide dramatically more force. Let’s estimate the force
needed.

Suppose the car travels 1 meter further before the cable goes taught. This implies sin θ =
(1 m)/(10 m) or θ = 5.74o.



The momentum vector turns by the same angle. Looking at the bottom
figure, that implies that sin (θ/2) = (∆p/2)/p or ∆p = 2p sin (θ/2) =
(2)(1000)(30) sin (2.2.87o) = 3000 kg m/s.
The magnitude of the force during this sudden change in the car’s direction
will be F = ∆p/∆t so what would ∆t be? How long does it take for the
cable to go from 10 m long but slack, to 10 m long under tension? One
way of estimating this is to use the speed of sound in the material, which
is about 9000 m/s in steel. This gives us an approximate time for the
‘information’ about the tension to get from one end of the cable to the
other, which for a 10 m long cable would be about 1 millisecond.

For that brief time interval, the cable has to provide a force of about F = (3000 kg m/s)/(0.001 s) =
3, 000, 000 N . That’s about thirty times more force that the cable was designed to provide.
We could achieve that using 30 cables all connecting the car to the grappling hook but the
bundle of cables would be too heavy to launch.

Ultimately, this attempt was doomed from the start at the time the episode was done: there
simply weren’t any lightweight materials that could provide that much force without breaking.
Today, carbon fibers can be more than 10 times stronger than steel and also 5 times lighter.
Manufacturing such a cable might be challenging today, but the idea of doing such a turn
via cable tension is certainly more plausible today. (That 3 million newton’s of force on the
1000 kg vehicle represents an acceleration of 3000 m/s2 or about 300 g′s, so the car might not
survive intact, but at least the cable would...)


