
PH2213 Fox : Lecture 24
Chapter 10 : Rotational Motion, Angular Equations of Motion

A Merry-go-Round takes 6 seconds to spin up from
rest to reach it’s final speed, at which point it takes 4
seconds to make one complete rotation.

• What angular acceleration does this represent?

• How many rotations does the MGR go through
from rest until it reaches its operating speed?

The Merry-go-Round (MGR) is starting at rest, so ωo = 0.

Once up to its operating speed, it’s rotating once every 4 seconds, so T = 4 s, making ω = 2π/T =
1.5708 (rad)/s.

It goes from rest to that (angular) speed in 6 seconds, so:

• ω = ωo + αt or

• 1.5708 (rad)/s = (0) + (α)(6 s) so:

• α = 0.2618 (rad)/s2

(Note: I put ‘radians’ in parenthesis because it’s not a real physical unit. The true units for angular
velocity are just s−1 and for angular acceleration they’d be just s−2.)

How ‘far’ (in angular terms) did the MGR rotate during this 6 second spin-up period?

• θ = θo + ωot+
1
2
αt2 so:

• θ = 0 + (0)(6) + (0.5)(0.2618(rad)/s2)(6 s)2 = 4.71 rad

Another path: we have the initial and ‘final’ angular velocities over this 6 second interval, and we
also know the angular acceleration, so:

• ω2 = ω2
o + 2α∆θ or:

• (1.5708)2 = (0)2 + (2)(0.2618)∆θ which yields:

• ∆θ = 4.71 (rad) (same result)

Converting that to rotations: (4.71 rad) × 1 rotation
2π rad

= 0.75 rotations Apparently it took 3/4 of a
full turn to bring the MGR up to full speed.



Relating Angular and Linear Motion
A point located some distance R from the axis
of rotation traces out a circular path of length
l = Rθ.
Differentiating that: dl/dt = Rdθ/dt or v = Rω .
The linear speed of the object along it’s circu-
lar path is equal to the angular speed of the
object multiplied by its distance from the axis of
rotation.
Note that a point farther out is moving propor-
tionally faster.
An object moving in a circular of radius R at a
speed v represents a radial acceleration of ar =

v2/R = (Rω)2/R = Rω2 so ar = v2/R = ω2R

If the Merry-go-Round has a radius of r = 4 m, how fast is a person
on the outer edge moving when the ride is fully spun up?
What is the person’s radial acceleration at this point?

Recall we previously found that when running at full speed, the MGR has an angular speed of
1.5708 (rad)/s.

Speed: v = Rω = (4 m)(1.5708 (rad)/s) = 6.283 m/s (and note we’ve discarded the non-unit units
of radians from the final answer).

Radial Acceleration:

• Method 1 : ar = v2/R = (6.283 m/s)2/(4 m) = 9.87 m/s2

• Method 2 : ar = ω2R = (1.5708 rad/s)2(4 m) = 9.87 m/s2

Note in either case here we end up with a radial acceleration that’s higher than g. It would take
some effort for a person to remain standing in place with the MGR operating at this speed. Static
friction almost certainly wouldn’t be enough (see the MGR examples in examples10-core.pdf), so
they better be holding onto something!



What if the object has an angular acceleration
(like our MGR during its spin-up period)?
l = rθ so dl/dt = rdθ/dt or v = rω
Differentiating again: dv/dt = rdω/dt = rα
NOTE: this is the linear acceleration of the object
along the path : i.e. tangent to the circle it’s
tracing out. This is referred to as the tangential
acceleration:
at = rα

The point is rotating in a circle though, so it still also has a radial component to its acceleration:

ar = v2/r = ω2r

Find the tangential and radial components of the person on the outer
edge of our Merry-go-Round:

(a) The instant after the MGR starts operating

(b) The instant just before it reaches it’s full operating speed

(c) The instant just after it’s reached it’s full operating speed and is
no longer (angularly) accelerating

(a) At this point, the motion is starting from rest,
so v = 0 and ω = 0 at t = 0. The radial accel-
eration will be ar = v2/r = ω2r = 0. The an-
gular acceleration is α = 0.2681 (rad)/s2 during
this phase, so the tangential (physical) acceler-
ation will be at = Rα = (4 m)(0.2681 rad/s2) =
1.05 m/s2.
These two (perpendicular) components combine
to yield the complete a⃗ acceleration at this in-
stant, so the moment just after the motor is
turned on, the person will feel an acceleration
of magnitude |a| =

√
a2r + a2t = 1.05 m/s2, and

based on the picture, as a vector it will be point-
ing entirely tangent to their circular path.



(b) At this point, the MGR is just about
to reach it’s full operating speed of ω =
1.5708 rad/s and in the last phase of accelerat-
ing so α = 0.2681 rad/s2 still. At this point,
we have a radial acceleration of ar = ω2R =
(1.5708 rad/s)2(4 m) = 9.87 m/s2. It still has
a tangential acceleration of at = Rα = 1.05 m/s2.
The full acceleration vector has two compo-
nents: radial and tangential, so the magni-
tude of the acceleration vector at this point is
|⃗a| =

√
(at)2 + (ar)2 =

√
(1.05)2 + (9.87)2 =

9.93 m/s2. This is the point where the overall ac-
celeration reaches its maximum value and where
the person will have to exert the most force to
hold themselves in place.

(c) At this point the angular acceleration has
stopped and the MGR is just cruising around at
a constant ω = 1.5708 rad/s. α = 0 now, so
at = Rα = 0 : there’s no more tangential acceler-
ation. We do still have the usual radial accelera-
tion though: ar = ω2R = 9.87 m/s2.
And again, the total acceleration magnitude has
dropped slightly to just: |⃗a| =

√
(at)2 + (ar)2 =√

(0)2 + (9.87)2 = 9.87 m/s2.



Rotational Forces : Torque

Observation : Suppose we have bicycle wheel suspended on a stand so that the axle is fixed in place
but the wheel can rotate about that point. We then apply the same magnitude of force to different
points on the wheel, and at various angles.

• outer edge, radially (no effect)

• outer edge, tangent to wheel (considerable
effect)

• outer edge but at an angle now: radial com-
ponent has no effect; only the tangential
component

• change where we apply the force now: move
in close to the axis

• same force but closer in: smaller effect

The angular acceleration is proportional to r (how far out from the axis the force is applied), and
is also proportional to the component of the force tangent to r⃗.

Define the torque to be τ = Ftanr (or equivalently τ = rFtan).

• Metric units: N ·m : (newtons)× (meters)

• English units: lb · ft (sometimes seen as ft · lb, but that’s more often used to represent work
and not torque...)

WARNING : (force)× (distance) is also units of work (energy, which
has units of joules) so torque and energy technically represent the same
fundamental units, but by convention, torque is never written as hav-
ing units of Joules.



Consider a point-mass object on a thin (rigid) wire

of length r. We apply a force F⃗ to that point. How
does it move?
Start: Ftan = matan
Morph into something involving rotational vari-
ables:

Ftanr = matanr
atan = rα so:
Ftanr = mr2α or:
τ = (mr2)α

Follows the pattern of Newton’s Laws (F = ma) but with rotational entities now (torque and
angular acceleration).

The proportionality constant (m in Newton’s laws) is replaced with something else (here mr2 for
the point mass on a wire). That entity is called the moment of inertia.

Point mass Set of point masses (mobile) Continuous object

I = mr2 I =
∑

mir
2
i I =

∫
r2dm

Rotational Version of Newton’s Laws:
∑

τ = Iα

Note: All three of these are ‘about a specified axis’:

• torque about the axis

• angular acceleration about that axis

• moment of inertia about that axis

and remember that signs are taken to be positive for counter-clockwise and negative for clockwise
angles, speeds, accelerations about that axis.



Example : Earlier, we had a Merry-go-Round that
took 6 seconds to spin up from rest to its operating
speed, where the final period was 4 seconds. We found
the MGR had an angular acceleration of α = π

12
=

0.2618 s−2.
Suppose the MGR has a moment of inertia (for the
given axis of rotation) of I = 2500 kg m2. (I looked
up some actual MGR dimensions and this would be
reasonable.)

What torque must the motor driving the MGR be generating?

Compare this to typical car engine torques, which range from 100 to 400 lb ft. (The engines in
18-wheelers generally have torques in the 1000 to 2000 lb ft range.)

τ = Iα so here τ = (2500 kg m2)(0.2618 s−2) = 654.5 N m

Converting units:

τ = (654.5 N m)× 1 lb
4.4448 N

× 3.281 ft
1 m

= 483 lb ft

That’s at the high end for most passenger cars, but well below the motor torque in an 18-wheeler,
so this might be plausible. A smaller engine would just mean less torque, resulting in a longer
spin-up time for the ride.


