
PH2213 Fox : Lecture 26
Chapter 10 : Rotational Motion, Angular Equations of Motion

The bike wheel in the figure has a mass of 4 kg and a
radius of 0.4 m. (Treat the wheel as a ring where all
the mass is at that distance from the axis.)
What is the moment of inertia of the wheel for rota-
tions about it’s (fixed) axle?
The wheel is rotating at 4 rev/sec and we want to
bring it to a stop by pushing on it with the palm of our
hand. If we push with F = 20 N and the coefficient of
kinetic friction between our hand and the rubber tire
is µk = 0.5, how long will it take to bring the wheel
to a stop?

Moment of inertia : all the mass is at r = R so the ‘integral’ is just I = MR2. We can also
use the table on the previous page since this geometry is the same as the hollow cylinder rotating
about an axis down it’s center (where the ‘height’ of the cylinder has shrunk down to nothing). So
here: I = MR2 = (4 kg)(0.4 m)2 = 0.64 kg m2.

Torque : our pushing force is essentially the normal force between our hand and the tire, so here
fk = µkFN = (0.5)(20 N) = 10 N . This force is tangent to the circle representing the wheel, so:

Torque on the wheel: τ = Ftanr = (10 N)(0.4 m) = 4 N m. BUT: we need to think about the
sign here too. If this were the only force acting on the tire, it would cause it to rotate clockwise,
and clockwise is the negative direction, so really τ = −4 N m here. (If multiple forces are creating
torques on an object, we have to go through a similar hand-waving argument to decide what sign
to attach to that torque. We’ll have a more rigorous way of doing this once we cover the ‘cross
product’ operation in chapter 11.)∑

τ = Iα so −4.0 = (0.64)(α) or α = −6.25 rad/s2 .

As the wheel turns, it is slowing down with that angular acceleration.

How long will it take to bring the wheel to a stop then?

What was the wheel’s initial angular speed? The 4 revolutions/sec value provided is actually the
frequency f , but we can convert that to angular speed: ω = 2πf = 8π s−1.

ω = ωo + αt so: 0 = (8π) + (−6.25)(t) from which t = 4.02 s. It would take just over 4 seconds to
bring the wheel to a stop.

How many revolutions will the tire have made while coming to a stop?

We have multiple options now since we know the starting and ending (angular) speeds, the accel-
eration, and the time:

• ω2 = ω2
o + 2α∆θ so (0)2 = (8π)2 + (2)(−6.25)(∆θ) from which ∆θ = 50.53 radians which is

(50.53 rad)× 1 rev
2π rad

= 8.04 revolutions.

• θ = θo + ωot+
1
2
αt2: θ = 0 + (8π)(4.02) + (0.5)(−6.25)(4.02)2 = 50.53 rad (same result)



• ωavg = ∆θ/∆t so ∆θ = (ωavg)(∆t) = (8π+0
2

)(4.02) = 50.52 rad (ok, finally a tiny bit of round-
of there in the 4th significant figure but I rounded t to 4.02 s so that’s not unexpected...).

Work done by friction

The wheel made 8.04 revolutions as friction slowed it down to a stop. How much tire rubber passed
by our finger? Each rotation represents a full circumference of the circle, which is a length of C =
2πr = (2)(π)(0.4 m) = 2.513 m so our finger slid along (2.513 m/revolution)×(8.04 revolutions) =
20.21 m.

The work that friction did was Wfk = −fkd = −(10 N)(20.21 m) = −202.1 J .

Friction did that much negative work (which would have turned into that much heat).

The fact that friction is removing that much energy bringing the wheel to a stop means that the
spinning wheel must have started out with that much kinetic energy. Even though the wheel’s
center of mass didn’t move at all here, just the fact that it was rotating means kinetic energy is
present.



Rotational Kinetic Energy

At the end of chapter 9, we started breaking the motion of object up into two parts. First, there’s
its center of mass motion (due to any external forces like gravity acting on the object), where the
(CM of the) object follows the nice equations of motion we’ve used since chapter 2. In addition to
that motion, the object may also be rotating about an axis through it’s center of mass, and that is
the focus of chapters 10 through 12, introducing rotational equations of motions, rotational forces
(torques). Today we’ll focus on ‘rotational energy’ and how we can use that to analyze the motion
of real, extended objects instead of just pretending everything is a point mass (finally).

Consider an object rotating about some axis:

We can break the object into a vast number of tiny mass
elements mi, and if the entire object is rotating about
some axis with an angular velocity ω, then every little
mi element of the object is doing the same thing.
Each of those elements is located some distance ri from
the axis of rotation though, so this angular motion means
that each element is tracing out a circular path.
The linear speed of that element (i.e. the usual m/s type
speed) will be vi = riω, so that little element represents
a kinetic energy of Ki =

1
2
miv

2
i and replacing vi with riω

we can write it’s kinetic energy as: Ki =
1
2
mi(riω)

2 =
1
2
mir

2
iω

2.

Summing up all these kinetic energies over the entire object, we have:

K = 1
2
(
∑

mir
2
i )ω

2 which is K = 1
2
Iω2 .

The kinetic energy introduced by the object ro-
tating is called the rotational kinetic energy:

Krot =
1
2
Iω2

to differentiate it from the kinetic energy due to
the object as a whole moving (i.e. how is it’s cen-
ter of mass moving):

Kcm = 1
2
mv2cm

(NOTE: Ktrans (for ‘translational’) is another common way to denote Kcm.)

K = Kcm +Krot =
1
2
mv2cm + 1

2
Iω2

We’re almost ready to produce the complete Work-K and CoE equations but need to talk about
work done by torques first:



Rotational Work

If we start with one of the angular equations of motion: ω2 = ω2
o + 2α∆θ.

and then multiply that equation by 1
2
I, we arrive at:

1
2
Iω2 = 1

2
Iω2

o + Iα∆θ or:

Krot,final = Krot,initial + (τ)(∆θ)

Compare that to our previous (linear) Work-K relation: Kfinal = Kinitial + (F )(d)

In the linear case, the work done by a force in the same direction as the displacement was W = Fd.

In the rotational case, again our linear relationships map into their angular equivalents. The work
done by a torque τ as it rotates something through an angle ∆θ is W = τ∆θ .

Similarly, the rate at which a rotational force (torque) does work would be P = τω (compare to
P = Fv in the translational case).

NOTE: technically P = F⃗ · v⃗ and same with the rotational situation:
P = τ⃗ · ω⃗ but since all our angles, angular speeds, torques, etc are all
occuring about the same Z axis coming up out of the board, the dot
product reduces to just W = τ∆θ and P = τω.

Conservation of Energy

Work-K and CoE are still good ways to analyze situations but we have to account for the possibility
of rotational work and rotational kinetic energy:

Work-K : Kb = Ka +
∑
all

W

CoE : (K + Ug + Us)b = (K + Ug + Us)a +
∑
other

W

where in each caseK = Kcm+Krot now, and where we may have rotational work terms (torque)X(angle)
in addition to the old (force)X(distance) type of work.



Example : Grinding Wheel
(HW 10.37, modified)

Problem 10.37 A grinding wheel is a uniform
cylinder with a radius of 8.50 cm and a mass of
0.380 kg. Calculate:

(a) the moment of inertia about its axis of
rotation:
From table: I = 1

2
MR2 for this shape so

I = (0.5)(0.380 kg)(0.085 m)2 = 1.373 ×
10−3 kg m2.

(b) the applied torque needed to accelerate it from rest to 1500 rpm in 0.50 sec
τ = Iα so what is α here? In 5 seconds, the disk goes from rest to 1500 rev/min which
represents an angular speed of (1500 rev

min
) × 2π radians

1 rev
× 1 min

60 s
= 157.1 rad/s. ω = ωo + αt so

157.1 = 0 + (α)(0.5 s) so α = 314.16 rad/s2. (100π rad/s2 exactly, as it turns out.)
Finally, τ = Iα = (0.001373 kg m2)(314.16 rad/s2) = 0.43 N m. (The motor in a real
grinding wheel would probably put out much more torque than that...)

Bringing in our earlier angular topics from this chapter:

(c) How fast (in m/s) is the outer edge of the grinding wheel moving?
v = rω so here vedge = (0.085 m)(157.1 rad/s) = 13.35 m/s (about 30 miles/hr).

(d) What is the radial acceleration of a point on the outer edge of the grinding wheel?
ar = v2/r = rω2 = (0.085 m)(157.1 rad/s)2 = 2097 m/s2 (about 214 g’s)

(e) How many revolutions did the wheel rotate through during this spin-up?
One solution: use the angular equations of motion to find the angle θ the wheel has turned
through, then convert that into revolutions: θ = θo+ωot+

1
2
αt2 so θ = 0+0+(0.5)(314.16 rad/s2)(0.5 s)2 =

39.27 rad and each 2π radians represents one rotation, so dividing by 2π yields 6.25 revs.
Another option: ωavg = ∆θ/∆t so ∆θ = ωavg∆t and let’s just leave everything in units
of revolutions. (1500 rev

min
) × 1 min

60 s
= 25 revs/second. The average angular speed will be

wavg =
1
2
(ωo+ω) so ωavg = 12.5 rev/sec. Then ∆θ = ωavg∆t = (12.5 rev/s)(0.5 s) = 6.25 revs.

(f) How much energy is ‘stored’ in the rotating grinding wheel?
Krot =

1
2
Iω2 = (0.5)(0.001373 kg m2)(157.1 rad/s)2 = 16.9 J

(g) What average power must the motor be putting out here?
Pavg = (work)/(time) = (16.9 J)/(0.5 s) = 33.8 W

In real grinding wheel tools (well, in nearly any scenario really) there is some internal friction, so
let’s account for that:



Suppose we find that if we disconnect the motor from the wheel, it is seen to slow down from
1500 rpm to rest in 5 s.

(h) How much frictional torque must be present?
We can do the same process as above. τ = Iα but what is the α for this ‘spin-down’ phase?
The wheel starts at ωo = 157.1 rad/s and ends at ω = 0 after 5 sec so ω = ωo + αt yields
α = −31.4 rad/s2.
τ = Iα so the frictional torque present here must be τfriction = Iα = (0.001371 kg m2)(−31.4 rad/s2) =
−0.0431 N m.

(i) How much heat was generated as the wheel spun down?
(I.e., how much work did this frictional torque do?) (SHORTCUT HERE!)
Once the motor is out of the picture, all the 16.9 J of (rotational) kinetic energy stored in the
wheel is being removed solely by the frictional torque, so apparently it did −16.9 J of work,
creating that much heat.

(j) How much torque must the motor have really been putting out?∑
τ = Iα so τmotor + τfriction = Iα so:

τmotor − 0.0431 = (0.43 N m) so τmotor = 0.473 N m (a little higher than we found before
when we ignored friction)

(k) What average power was the motor putting out during the spinup phase?
With friction included now, the work the motor did went into two buckets: most of it went into
the kinetic energy of the rotating wheel, but it also had to do some additional work to account
for the energy lost due to friction during the spinup. How much work did friction do during
the spinup? W = τ∆θ and the wheel turned through ∆θ = 6.25 revs = 39.27 radians so
the friction work during the spinup was Wfriction = τfriction∆θ = (0.0431 N m)(39.27 rad) =
−1.69 J . The motor had to do 16.9 J of work creating that much rotational kinetic energy in
the wheel, plus another 1.69 J to account for the energy lost due to heat, so it did 18.59 J of
work altogether. It did that in 0.5 sec, so the average power the motor was putting out was
Pavg = work/time = (18.59 J)/(0.5 s) = 37.2 Watts.

(l) What instantaneous power did the motor have to be putting out right near the
end of the spinup phase?
P = τω and the motor is putting out (0.473 N m)(157.1 rad/s) = 74.3 W .
(If I’d kept enough signficant figures in all the intermediate result, this number should be
exactly twice what it’s average power was over the 5 second spinup...)

(m) How about when the wheel is now turning at a constant 1500 RPM?
Once the wheel is completely spun up, the motor only has to put out as much torque as
friction is creating in the other direction since α = 0 at this point. The motor torque is now
just 0.0431 N m (same magnitude as friction, just in the opposite direction) so the motor
power now only needs to be P = τω = (0.0431 N m)(157.1 rad/s) = 6.77 Watts (and friction
will be removing energy at the same rate, turning it into heat).



Review

• Rotational version of Newton’s Laws:
∑

τ = Iα where each τ = Ftanr
(all of those are found for a given axis of rotation)

• Signs: POSITIVE means counter-clockwise (CCW) about the axis of rotation
NEGATIVE means clockwise (CW) about that axis

• Moment of Inertia: I =
∑

(mir
2
i ) or I =

∫
r2dm

(see table for common geometric shapes, rotating about particular axes)

• Rotational kinetic energy: Krot =
1
2
Iω2 Work: W = τ∆θ

• Work-K and Conservation of Energy still viable, but potentially have two types of kinetic
energy now: K = Kcm +Krot =

1
2
mv2cm + 1

2
Iω2

Angular Variables : rotation about a single axis

• ωavg = ∆θ/∆t ω = dθ/dt (angular velocity)

• αavg = ∆ω/∆t α = dω/dt (angular velocity)

Angular Equations of Motion (requires constant (angular) acceleration):

• ω = ωo + αt

• θ = θo + ωavg∆t θ = θo + ωot+
1
2
αt2

• ω2 = ω2
o + 2α∆θ



A 15 N force is applied to a cord wrapped around a
pulley of mass M = 4 kg and radius Router = 33 cm
and Rinner = 3 cm. There is also a frictional torque
at the axle of magnitude |τfriction| = 1.1 N m.
If the system starts at rest, how fast will the pulley be
turning after one complete rotation? (∆θ = 2π rad)

Moment of inertia for this geometry (from table) :
I = 1

2
M(R2

outer +R2
inner) = (0.5)(4)(0.332 + 0.032) = 0.22345 kg m2

Let’s first attack this using Work-K: Kfinal = Kinitial +
∑

W where here the object is just
rotating in place, so K = 1

2
Iω2 and we’ll calculate all the works via W = τ∆θ.

Torque about the axis created by the tension in the cord.
r⃗ points from the axis of rotation to the point where this force is
being applied (right on the left edge of the pulley). F⃗ points in the
direction of that force.
Magnitude: |τ | = rFtan = (0.33 m)(15 N) = 4.95 N m
Direction: this force would cause a CCW (+) rotation, so τ =
+4.95 N m.

Torque about the axis due to the frictional force. r⃗ points
from the axis of rotation to the point where this force is being
applied (the pulley is resting on the axle, so this would be the
point shown in the figure). We found that the cord acting alone
would cause the pulley to rotate counter-clockwise (due to being
a positive torque), so the pulley material will be moving to the

left scraping over the axle. That means f⃗k will be acting to the
right on the pulley at that point.

They gave us the magnitude |τ | = 1.1 N m. Looking at the direction of fk, a force in that direction
would cause a clockwise angular acceleration, and CW is negative, so: the torque on pulley due
to friction: τfk = −1.10 N m.

(Note: Gravity F⃗g is also acting on the pulley but we’ll see later why gravity isn’t introducing any
torque on the pulley here.)

Work done by pulley : W = τ∆θ = (+4.95 N m)(2π rad) = +31.102 J

Work done by friction : W = τ∆θ = (−1.1 N m)(2π rad) = −6.9115 J

Kfinal = Kinitial +
∑

W = 0 + 31.102− 6.9115 = +24.19 J .

K = 1
2
Iω2 and we found earlier that the moment of inertia of the pulley was I = 0.22345 kg m2 so

24.19 = 1
2
(0.22345)ω2 from which ω = 14.7 rad/s.



Using Equations of Motion

We could also use
∑

τ = Iα and equations of motion to solve this:∑
τ = +4.95− 1.10 = 3.85 N m and I = 0.22345 kg m2 so α = (

∑
τ)/I = 17.23 rad/s2.

Then: ω2 = ω2
o + 2α∆θ so ω2 = (0)2 + (2)(17.23)(2π) = 216.52 from which ω = 14.7 rad/s.

How realistic is this?

The problem stated that the frictional force is producing a torque of magnitude 1.1 N m.

Well, τ = rFtan and here the force is kinetic friction, so τ = rfk = r(µkFN).

The disk is basically resting on the top of the axle, so looking at all the vertical forces,
∑

Fy = 0
so FN −mg − Fpull = so FN = mg + Fpull = (4 kg)(9.8 m/s2) + 15 N = 54.2 N .

This force is being applied 3 cm from the axis of rotation, so τ = rµkFN means that 1.1 =
(0.03)(µk)(54.2) from which µk = 0.68 which is a lot of friction.

A real-world pulley would likely have bearings or something to significantly reduce the friction.
There will always be some friction, but the numbers given here are a stretch.



A meter-stick is suspended from one end and can ro-
tate freely about that point. If it’s released at rest in
position A, what will be the angular speed of the ruler
at position B? How fast will the far end of the ruler
be moving (in m/s) at position B?

Note: model the ‘ruler’ as a long thin rod of mass M and
length L, rotating about one of it’s ends. Consulting the
table of moments of inertia, we see I = 1

3
ML2 for this

geometry.
(See examples10-core.pdf for a similar ‘falling pole’ ex-
ample.)

DETOUR : In a CoE sense here, the stick is changing elevation, but different parts are undergoing
different changes. How do we deal with Ug when we have an extended object?

If we break the object up into an infinite number of infinitesimal pieces, with h being our vertical
axis: Ug =

∑
mighi or Ug = (

∑
mihi)g but hcm =

∑
mihi

M
so apparently Ug = Mghcm . This is a

huge help when it comes to dealing with extended (i.e. real) objects. It lets us essentially replace
the object with a point mass located at its center-of-mass for some purposes (like determining Ug).

(We’ll find this idea repeated a few times: often we can treat an extended object as if it were a
point with the same mass but located at the CM of the object.)

The CM of the meter-stick will be exactly in the middle L/2. For purposes of Ug, let’s measure all
our heights relative to where the CM is located at position (B). Then:

(K + Ug + Us)B = (K + Ug + Us)A +Wother

We have no ‘other’ work here (just gravity), and no springs, and we’re starting at rest, so:

KB + 0 + 0 = 0 +Mg(L/2) + 0 + 0.

Now, what to do with the kinetic energy of the object... We could use Kcm +Krot, as the CM of
the object of certainly moving and then the stick is rotating about that point. It’s simpler if we
just compute K about the actual rotation axis instead of around the CM though for a problem like
this. In that case, all of the kinetic energy of the object can be written as Krot =

1
2
Iω2 if we let I

be the moment of inertial about the sticks actual rotation axis (instead of about the CM). So here:

1
2
Iω2 = 1

2
MgL

Consulting the table of moments of inertia, for this geometry we have I = 1
3
ML2 so:

1
2
(1
3
ML2)ω2 = 1

2
MgL and after rearranging and cancelling some common terms, we arrive at ω =√

(3g/L). Apparently the actual mass of the stick didn’t matter - just it’s length. (And for the
L = 1 m case here, ω = 5.422 rad/s.

The linear speed of the point on the far end of the meter stick will be moving at v = rω =
(1 m)(5.422 rad/s) = 5.422 m/s.



Same Scenario, Different Solution (NOT recommended.)

As noted in the previous problem, we can look at the meter stick as either:

• every mass element rotating about the actual rotation axis

• CM is moving, and the meter stick is rotating about the CM

We used the first (simpler) approach on the previous page. Let’s look at the second approach now
(and see why it’s usually avoided in situations like this).

In this approach we have two K terms: K = Kcm +Krot

The CM of the object is right at it’s midpoint, L/2 in from either end. The velocity of the CM
then will be v = rω so vcm = (L

2
)ω

Let’s compute the kinetic energy terms in a way that uses ω as our variable, so we can compare to
the previous solution.

Translational Kinetic Energy Term : We have Kcm = 1
2
Mv2cm. Replacing vcm with Lω/2, we

end up with Kcm = 1
8
ML2ω2. (That is the regular CM kinetic energy, but we’re expressing it in

terms of ω instead of vcm.)

Rotational Kinetic Energy Term : we’re now looking at the meter stick as rotating about
it’s center of mass, which means we need to use a different moment of inertia than we used
before. For a long thin rod rotating about an axis through it’s middle, I = 1

12
ML2.

Thus: Krot =
1
2
Iω2 = 1

24
ML2ω2.

Finally combining both types of kinetic energy:
K = Kcm +Krot =

1
8
ML2ω2 + 1

24
ML2ω2

which we can combine into: K = 1
6
ML2ω2.

Following the previous page’s approach, the initial Ug of MgL/2 is turning into this amount of K,
so:

1
6
ML2ω2 = MgL/2 from which ω =

√
(3g/L), which is the same result we had before.

Summary

We can certainly treat rotation as the linear motion of the center of mass plus rotation about that
center of mass, but:

When an object is rotating about a fixed point, it’s almost always simpler to just treat the kinetic
energy as entirely rotational, using the actual rotation axis that’s present in the scenario. (That
means using the proper moment of inertia: the one for the object rotating about the actual axis,
not neccessarily the moment of inertial about it’s CM. The parallel axis theorem I = Icm + Md2

may be needed to convert a moment of inertia from the table into one about the actual axis of
rotation.)



Rolling without Slipping

When a ball or wheel rolls across a surface (with-
out slipping), we can relate it’s translational and
rotational velocities:

It’s center-of-mass speed and it’s rotational speed
are locked together:
v = Rω

Compute and compare the translational and rotational kinetic energies of a rolling
bowling ball that has a translational (CM) speed of 8 m/s. ( M = 5 kg , R =
0.21 m )

Translational : Kcm = 1
2
mv2 = (0.5)(5 kg)(8 m/s)2 = 160 J .

Rotational : Krot =
1
2
Iω2

Solid sphere: I = 2
5
MR2 and v = Rω so ω = v/R

Moment of inertia : I = (0.4)(5 kg)(0.21 m)2 = 0.0882 kg m2

Angular speed : ω = v/R = (8 m/s)/(0.21 m) = 38.095 rad/s

Krot = (0.5)(0.0882 kg m2)(38.095 rad/s)2 = 64 J

Symbolic Comparison :

Krot =
1
2
(2
5
MR2)( v2

R2 ) =
1
5
Mv2 = 2

5
× 1

2
Mv2 which we can write as: Krot =

2
5
Kcm so here Krot =

(0.4)(160 J) = 64 J also.

In any event: Total K = Kcm +Krot = 224 J .

(Similar relationships between Krot and Kcm can be derived for other geometric shapes.)



A basketball (M = 0.65 kg, R = 23 cm, hollow sphere)
is released (at rest) at the top of a 30o ramp. If it rolls
(without slipping) down the ramp, how fast will it be
moving after travelling 4 m along the ramp?
(Compare to a point mass sliding down a frictionless
ramp.)

(see book and examples10-core.pdf for similar examples with a solid pool or bowling ball)

We’ll use CoE again but this time the ball will have both translational and rotational kinetic
energies.

The point where the ball touches the ramp is dropping vertically a distance H, and this is a solid
ball that isn’t deforming, so the CM (the geometric center of the ball) is also dropping vertically
the same amount. Let’s measure Ug relative to where the CM of the ball is when it reaches the
bottom of the ramp. Then:

(K + Ug + Us)bottom = (K + Ug + Us)top +Wother

No other work here and no springs, and it’s starting at rest at the top:

Kbottom + 0 + 0 = 0 +MgH + 0 + 0

BUT: K = 1
2
mv2 + 1

2
Iω2.

This is rolling without slipping, so v = Rω or ω = v/R

Hollow sphere, so I = 2
3
MR2. So:

Kbottom = MgH becomes:

1
2
Mv2 + 1

2
(2
3
MR2)(v/R)2 = MgH or:

1
2
Mv2 + 1

3
Mv2 = MgH. (The left term is the regular translational kinetic energy; the next term

is the rotational kinetic energy converted into terms involving M and v instead of I and ω so we
see that Krot is 2/3 the value of Ktrans : the rotational kinetic energy of a hollow sphere is a very
significant contributor to the overall kinetic energy of the ball.

In any event, combining terms: 5
6
Mv2 = MgH and finally v =

√
6
5
gH. (For our particular case,

H = (4 m) sin 30 = 2 m so v = 4.85 m/s : linear speed of the ball when it reaches the bottom.)

For comparison, suppose we had a point mass object of mass M sliding (without friction) down the
same ramp? Then basically the Ug = MgH at the top is all being converted into K = 1

2
Mv2 at the

bottom, so MgH = 1
2
Mv2 or v =

√
2gH, which here would be v = 6.26 m/s.

Notice that the rolling ball is moving slower and would take more time to get to the bottom, due
to the fact that the original MgH of potential energy has to go into two buckets (both linear and
rotational kinetic energy) this time.

(Also note that in the rolling case, neither the mass nor the actual size of the ball mattered! See
examples10-core.pdf and the similar book example of a solid ball rolling down an incline. That
gives a different result. The mass and size don’t matter, but how that mass is distributed inside
the sphere does (hollow vs solid).


