
PH2213 : Advanced Examples from Chapter 10 : Rotational Motion

NOTE: these are somewhat advanced examples of how we can apply the methods from this chapter,
so are beyond what will be on the final exam but may prove useful for students taking statics and
dynamics classes later.

Key Concepts

Methods in this chapter give us tools for analyzing rotational motion. They are basically the
rotational analogs of what we did in earlier chapters on linear motion.

Translational motion involved vector position r⃗, velocity v⃗ and acceleration a⃗ and we derived nu-
merous ‘equations of motion’ relating various combinations of these (and the time t). Similarly,
the complete description of angular motion also involves vectors. An angle of 30o is meaningless
without knowing what axis that angle is a rotation about. So the axis (which could be pointing

anywhere, and is thus a 3-D vector) is part of the concept of angular position θ⃗, angular velocity
ω⃗ and angular acceleration α⃗. This can get very complicated, so we restrict ourselves to rotations
that are confined to a plane and usually define the axis of rotation to be the Z axis.

Key Equations

For an object rotating in the XY plane (i.e. rotating about the Z axis), and angle, angular speed,
and angular acceleration are defined to be about the Z axis with the convention that the positive
direction is counter-clockwise about that axis.

NOTE: the standard unit for doing calculations involving rotation is the radian. One complete
rotation is 2π rad so 2π rad = 360o which allows to convert between them as needed.

Angular equivalents to some common 1-D equations of
motion:
ω = dθ/dt
α = dω/dt
θ = θo + ωot+

1
2
αt2

ω = ωo + αt
ω2 = ω2

o + 2α(∆θ)

Relating Linear and Angular Kinematics

v = rω

atan = dv/dt = rdω/dt = rα

arad = v2/r = rω2



Moment of Inertia and rotational kinetic energy

If an object is rotating, every piece of it is rotating at
the same ω even though each piece has different linear
speeds. We can accumulate all the kinetic energies in
each moving piece though and show that: K = 1

2
Iω2

where: I =
∑

mir
2
i for collections of point masses, or

I =
∫
r2dm for solid objects.

See page 260 for the mo-
ments of inertia of some ob-
jects that have common ge-
ometric shapes.

Parallel Axis Theorem : If we compute the value of I for some object rotating about an axis
through it’s center of mass and now desire to rotate it about some other axis - but one that is
parallel to the original one and just shifted some distance d to the side, we don’t need to recompute
I from scratch. The new moment of inertia I is related to the original one Icm by: I = Icm +Md2

where M is the total mass of the object.

Gravitational Potential Energy : for an extended object, we can add up the Ug of each little
dm element of the object and show that Ug = Mgycm : that is, it is the same as if all the mass were
located at the center of mass of the object.

Torque : A force F⃗ applied at a location r⃗ from
the axis of rotation O produces a torque of τ⃗ =
r⃗ × F⃗ . The magnitude will be |τ⃗ | = rF sinϕ;
direction or sign from right-hand rule. (See figure
at right for alternate ways to compute.)

Equilibrium:
∑

τ⃗ = 0

Rotational Versions of Newton’s Laws, energy,
and power:

∑
τ⃗ = Iα⃗ W = τ⃗ ·θ⃗ P = τ⃗ ·ω⃗

Torque due to weight of an extended object: acts
as if all the mass were located at the CM of the
object.



1. Real Pendulum
Let’s revisit our pendulum in light of what we’ve learned
in this chapter. In the earlier sample problems involving
pendulums, we treated the mass M at the end of the
string of length L as a point. Suppose it isn’t: suppose
the mass is a solid sphere of some radius so that we do
have to account for it’s moment of inertia. How does
that affect the speed of the sphere as it passes through
the lowest point on the arc?

From earlier chapters, if we hang an object of mass M on the end of a string of length L and
start things off at an angle θ, we found using conservation of energy (or work and energy)

that the speed at the bottom of the arc will be v =
√
2gL(1− cos θ)

For purposes of this problem, suppose the distance from the point of rotation to the center of
mass of the object is L = 1.5 m. The object itself has a mass of M = 10 kg and a radius of
20 cm (i.e. 0.2 m). And suppose we’ve started things off with the ball at rest hanging out at
θ = 30o.

Then according to our ‘old’ way of doing this problem, the mass will swing past the bottom

of the arc with a speed of v =
√
(2)(9.81)(1.5)(1− cos 30) = 1.986 m/s.

Doing this problem more correctly, we don’t have a point mass swinging around a semi-circular
arc, we actually have an extended physical object rotating about some point. In fact we have
a solid sphere, rotating about an axis that is offset from the center of mass of the sphere by a
length L = 1.5 m. The moment of inertia of a solid sphere rotating about an axis through its
center of mass is Icm = 2

5
MR2 = (0.4)(10)(0.2)2 = 0.16 kg m2 but here we’re rotating about

a point 1.5 m away so using the parallel axis theorem, I = Icm+ML2 = (0.16)+ (10)(1.5)2 =
22.66 kg m2.

We can work through this one just like we did with the old point-mass pendulum: basically
some initial gravitational potential energy is being converted into kinetic energy at the bottom
of the arc. Using that bottom point as y = 0 we found that the elevation of the initial point
was h = L(1 − cos θ) = (1.5)(1 − cos 30) = 0.20096 m, which means we have an initial
Ug = mgh = (10)(9.81)(0.20096) = 19.714 J

At the bottom now, this energy has been converted into the energy of the sphere rotating
about the point on the ceiling, so K = Krot = 1

2
Iω2 or 19.714 = 1

2
(22.66)(ω)2 and finally

ω = 1.319 rad/s. As the ball passes by this lowest point, at that instant the pendulum has
an angular speed of 1.319 rad/s.

Generically, v = rω so at the bottom the sphere is moving at a speed of v = (1.5m)(1.319 rad/s) =
1.978 m/s. Recall from earlier that our ‘point-mass’ pendulum had a speed of v = 1.986 m/s
at the bottom, so taking into account the extended nature of the sphere results in a pendulum
that swings slightly slower. It’s only 4/10’th of a percent slower in this case, but if you’re
designing a clock this adds up to about 6 minutes a day. (Note: the sphere in this problem
was much larger than what you’d see in an old grandfather clock, so the real impact of this
extended-object effect would be smaller but might still enough to throw the clock off a few
seconds each day, so would still need to be taken into account when designing the clock.)



2. Opening a Door (1)

Suppose we open a door by pushing with a constant force
at the edge of the door in such a way that we keep the
force perpendicular to the door, as shown in the figure.
How fast will the door be moving when it has swung
through 90 degrees?

This force is producing a torque about the axis of rotation. If this torque is constant, we can
use our (angular) equations of motion to determine how fast it is rotating at some later point.

Suppose the force has a magnitude of 10 N and we can model the door as a thin rectangle
that is rotating about one of its edges. I = 1

3
ML2 for this geometry, where L here would

be the width of the door. (The table in the book does not include this shape specifically,
but since I =

∫
r2dm, it only matters how far out each dm mass element is from the axis of

rotation. The door rotating about one edge is equivalent to a rod rotating about one end. Or
you can visit wikipedia and find the same equation...)

Suppose the door has a mass of M = 21 kg and a width of L = 1 m.

Then I = 1
3
(21 kg)(1 m)2 = 7 kg m2.

This force is always being applied perpendicular to the door right at the edge, so the torque,
τ = F⊥r will be the same as the door opens. τ = (10 N)(1 m) = 10 N m. This means we
have a constant torque and can use τ = Iα to find the (constant) angular acceleration of the
door: (10) = (7)α or α = 1.428 rad/s2.

Since we have constant angular acceleration, we can use ω2 = ω2
o + 2α∆θ to find the an-

gular speed when the door has opened by 90 degrees (i.e. ∆θ = π/2 rad): ω2 = (0)2 +
(2)(1.428)(π/2) or ω = 2.12 rad/s.

The linear speed of the outer edge of the door at this point would be:
v = rω = (1 m)(2.12 rad/s) = 2.12 m/s.



3. Opening a Door (2)

Let’s try opening the door a different way, where this time
we just keep pushing ‘forward’ with a constant force, but
still applying the force at the outer edge of the door. In
this case (see figure), the force is no longer perpendicular
to the door (except right at the start). That means that
F⊥ is no longer constant, so the torque won’t be constant
either and we can’t use our angular equations of motion
to solve for the speed of the door at θ = 90o this time.
We can use work and energy methods to solve this sce-
nario. The kinetic energy of the door when it has opened
is equal to the initial kinetic energy plus any work done:
K2 = K1 +

∑
W . Here, K is just the rotational kinetic

energy of the door, so K has the form of 1
2
Iω2. The work

done by the pushing force will be W =
∫
F⃗ · d⃗l or in

angular terms: W =
∫
τdθ.

τ = F⊥r so we need to figure out how F⊥ is changing as the angle changes. Using the lower
part of the figure, we can propagate the angle θ around to see that F⊥ = F sin (90− θ) but
we can write that as F⊥ = F cos θ.

Putting this back into our work equation: W =
∫
τdθ becomes W =

∫ π/2
0 (F cos θ)(L)dθ or

just W = FL
∫ π/2
0 cos θdθ. That is an integral we can do though. The antiderivative of

cos is just sin so W = FL sin θ evaluated between the limits of 0 and π/2. Finally then:
W = FL = (10 N)(1 m) = 10 N m.

Putting this back into our work-energy equation: 1
2
Iω2 = 1

2
Iω2

o+
∑

W becomes: 1
2
(7 kg m2)ω2 =

0 + 10 N m leading to ω = 1.69 rad/s. A point at the outer edge of the door will be moving
with a speed of v = rω = (1.0 m)(1.69 rad/s) = 1.69 m/s.

Note that this is not as fast as we had in the previous case.



4. Opening a Door (3)

Suppose this time, we apply a force whose line of action
does not change as the door opens. This type of force is
fairly common and might represent a plunger-type gadget
that is pushing forward to open something. It just keeps
pushing forward in a straight line, regardless of how the
door is moving.
Note that the point of contact between the plunger and
the door changes as the door moves, but the lever arm
remains the same. That means we have a constant torque
and therefore a constant acceleration so we can use our
equations of motion and bypass the work integral.
We have to be careful though: since the lever arm is fixed
here, as we see in the lower figure eventually the door will
swing open far enough that the plunger is no longer in
contact with the door and will therefore no longer be
exerting any force (torque) on it.

All the work (energy) that the plunger puts into the door happens between the start and
that critical angle where the plunger ceases to be in contact with the door. From there out,
the torque drops to zero so the angular acceleration also drops to zero and the door will just
continue moving at whatever ω it had where the plunger stopped touching the door.

Looking at the lower figure, the critical angle (let’s call it θc ) will be where cos θc = l/L where
L is the width of the door and l (something smaller than L) is how far out from the axis of
rotation the plunger is acting.

How fast will the door be moving at this critical angle? ω2 = ω2
o +2α∆θ, where we can find α

from τ = Iα. We have several expressions for computing the torque but since the lever arm
is fixed here, τ = Fl is the most convenient. τ = Iα becomes Fl = Iα or α = Fl/I

If the door starts at rest then, the angular speed at the critical angle will be ω2 = 0 + 2Fl
I
θc.

We can get to this point more easily by looking at work and energy. K2 = K1+
∑

W becomes
1
2
Iω2 = 0+

∫ θc
o τdθ where τ = Fl is constant so 1

2
Iω2 = Fl

∫ θc
o dθ or just 1

2
Iω2 = Flθc which we

can rearrange into ω2 = 2Fl
I
θc - the same thing we got using our angular equations of motion.

Suppose the width of the door is L = 1 m and we apply the same 10 N force we’ve been using
in the other examples but this time we apply it using this plunger method right in the middle of
the door, so l = 0.5 m. Then cos θc = 0.5/1.0 gives θc = π/3. Finally ω2 = (2)(10)(0.5)

7
π
3
= 1.496

or ω = 1.22 rad/s. That’s the angular speed the door will have at the point where the plunger
ceases to be in contact with the door so it will retain this speed from there on. The linear
speed at the edge of the door from here out would be v = rω = (1 m)(1.22 rad/s) = 1.22 m/s.

Suppose we apply the force at a different location, say l = 0.75 m or three-quarters of
the way out from the axis of rotation. Now θc = cos−1(0.75/1.00) = 0.7227 and ω2 =
(2)(10)(0.75)

7
(0.7227) = 1.549 or ω = 1.24 rad/s. That’s slightly faster than the first case where

we positioned the plunger at l = 0.5 m.



We can try various different positions and find that the final speed of the door changes. Where
should we position the plunger to give the door the maximum possible speed?

The farther out we place the plunger, the larger the torque will be since τ = Fl. But the
farther out the plunger is, the less it will remain in contact with the door (meaning that θc
is smaller). These two factors are working against one another. Where should we place the
plunger so that the door reaches the maximum speed? Our equation for the final speed of the
door was ω2 = 2Fl

I
cos−1(l/L) which we can write as ω2 = (2FL

I
)( l

L
) cos−1( l

L
).

If we let x = l/L then this is ω2 = (constant)(x cos−1 x)
so the maximum speed will occur where the expres-
sion x cos−1 x reaches a maximum. (This expression is
graphed in the figure to the right, and clearly does have
a maximum.) We’ve encountered this sort of thing in
calculus though. We can differentiate this expression and
set it to zero to find the value of x that maximizes the
expression. Unfortunately that leads to an equation we
can’t solve exactly. We can use a computer program to
find an approximate solution though, which is x = 0.652.
So if we want this plunger to open the door as fast as
possible, we could position it so that it pushes on a point
that is that fraction of the door’s width out from the axis
of rotation. (For our 1 meter wide door, that would be
at l = 0.652 m.)

At this particular value for l, how fast will the door be moving? ω2 = (2FL
I
)( l

L
) cos−1( l

L
) so

ω2 = (2)(10)(1)
7

(0.652) cos−1(0.652) = 1.603 or ω = 1.27 rad/s.

Looking back over all these door-opening examples, the maximum speed by far occured in
the first scenario, where we applied the force at the edge of the door and rotated the force
as the door opened so that it was always exactly perpendicular to the door. This produced
the maximum possible torque, and this torque remained active through the entire opening
process, leading to the maximum possible amount of work done (i.e. maximum possible final
rotational kinetic energy of the door). Applying the same magnitude of force in any other
way led to a slower final speed.



5. Opening a Door (4)

Just to complete this section, let’s consider a force that is
spread out over the door like wind. We can show that the
torque generated is the same as if the force were acting
at a point at the geometric center of the door, so this
is similar to Case 2. That means the work integral will
involve the cosine of the angle of the door.

As the door opens though (lower figure), less of the wind
is actually striking the door - in fact the actual force
hitting the door will involve the cosine of the angle as
well. In addition, the drag coefficient changes as the angle
changes, which (roughly) introduces yet another cosine
factor.

Ultimately, we end up with an integral that (ignoring all
the random constants that appear) involves

∫
cos3 θdθ.

If you are taking Calculus 2 this semester, this is exactly
the sort of integral you’ve been doing recently: trig func-
tions in various oddball combinations and powers.

Most of those integrals are just for practice, but some
really do appear in real-world scenarios like this.



6. Rotating Basketball - with Friction

Suppose we have a basketball sitting on the floor and we spin it, giving it some initial angular
speed, about an axis that is perpendicular to the floor. (So the ball is just sitting there and
spinning in place - it’s not rolling anywhere.) We want to make a rough estimate of how long
it takes for friction to slow the ball down to a stop. A regulation basketball weights 22 ounces
(which represents a mass of about 0.62 kg), and has a circumference of 28.5 inch (which turns
into a radius of 4.536 inches or 11.52 cm or finally 0.1152 m.

Let’s say the frictional force between the material the ball is made of and the floor is 0.50. (I
have no idea what it might be, so this is a wild guess.)

Let’s suppose we start the ball spinning so that it makes just 10 complete revolution per
second. Each revolution represents 2π radians, so that means the ball has turned through
10× 2π radians in 10 seconds, which is an angular speed of ω = (10× 2π)/1 s) = 62.8 rad/s.

Where the ball touches the floor, it flattens out slightly, which means we have a little circle
on the floor over which the frictional force is distributed. It can be shown that this will create
a torque of magnitude τ = 2

3
fR where f is the usual frictional force we can calculate from

fk = µkn and R is the radius of the little circle that represents the contact surface between
the ball and the floor. Looking closely at this contact point, it looks like this area is very
small - maybe a square centimeter or so, which means the radius is probably around 0.5 cm
or 0.005 m. The frictional force here is fk = µkn = µkmg = (0.5)(0.62)(9.8) = 3 N . Finally,
the torque this friction is generating will be about τ = 2

3
fkR = 2

3
(3 N)(0.005 m) = 0.01 N m.

τ = Iα so we’ll need the moment of inertia of the basketball. It’s essentially a hollow sphere
of mass M = 0.62 kg and radius R = 0.1152 m so using the table of moments of inertia,
for such an object I = 2

3
MR2 = 2

3
(0.62)(0.1152)2 = 5.5 × 10−3 kg m2 so τ = Iα becomes

(0.01) = (5.5× 10−3)(α) or α = 1.82 rad/s2.

We kind of ignored all the signs here, but this angular acceleration should be negative: the
friction is slowing down the rotation of the ball. ω = ωo+αt and we have the initial rotational
speed of the ball ωo = 62.8 rad/s, the final rotational speed: ω = 0 and we now have
α = −1.82 rad/s2 so: 0 = 62.8− 1.82t or t = 35 s.

If we do this experiment for real and we find the ball spins for a longer period of time before
coming to rest, then a couple of factors could account for this: maybe the coefficient of friction
between the ball and the floor is smaller than the 0.5 we assumed; or maybe the contact area
between the ball and the floor is smaller than what we guessed.

Consider what happens if we deflate the ball a bit and try to spin it. Now the contact area
will be much larger, which means the frictional torque will be larger which in turn will cause
the angular acceleration (well, deceleration) to be of larger magnitude, and the stopping time
will be shorter.

For a metal ball (ball-bearing maybe), the contact surface is very small, which means the
frictional torque will be very small and the ball can spin for a long time before stopping.



7. Work and Power in Rotational Motion
Suppose we have a horizontal, flat, stone cylinder with some axle
through the center that is being rotated by a horse attached to it via
a harness, basically creating an old-fashioned device to grind grain.
We want to determine how much power the horse is putting out to
turn the wheel. Let’s say the horse’s force is acting at a distance of
2 m out from the axle, the horse is walking at a speed of 1.5 m/s,
the coefficient of kinetic friction between the (rotating) stone and
the flat rock underneath it is 0.4, the rotating rock cylinder has a
diameter of 2 m (i.e. a radius of 1.0 m) and a mass of 200 kg.

From the rotational equivalents of our various work and power equations, P = τω so we need
to determine how much torque the horse is exerting, and the angular speed of the grinding
stone. The latter is easy enough. The horse is walking at a constant speed of 1.5 m/s along
a circular path with radius 2.0 m so v = rω or ω = v/r = (1.5 m/s)/(2.0 m) = 0.75 rad/s.

How much torque is the horse exerting though? It must be generating enough torque to
just match the torque due to rotational friction. For a force evenly distributed over
a circular contact area, we can break the contact area into little area elements dA and
integrate these torques over the entire contact area and show that the total torque friction

generates is τfric =
2
3
fkR where fk is the overall force of friction present (i.e. fk = µkn

) and R is the radius of the disk. Here, n = mg = (200 kg)(9.8 m/s2) = 1960 N so
fk = µkn = (0.4)(1960 N) = 784 N , and τ = 2

3
(784 N)(1.0 m) = 522.7 N m.

Power : The horse must be generating exactly the same amount of torque in the opposite
direction, so already we can determine how much power the horse is putting out: P = τω
so P = (522.7 N m)(0.75 rad/s) = 392 watts or slightly over a half a horsepower. That’s
reasonable. A horse can apparently put out about 15 HP for brief intervals, or 1 HP pretty
much indefinitely.

Force : How much force is the horse exerting on the harness? From the diagram the force
is exactly perpendicular to the radius, so τ = Ftanr where r is the distance from the horse’s
force to the axis of rotation (which was given to be 2 m above), so: (522.7 N m) = (F )(2.0 m)
or F = 261 N .

Work : We saw above that to keep the grinding wheel moving with the given speed, the horse
is putting out 392 watts, which is 392 joules of energy every second. Let’s look at the initial
spin-up, where the wheel starts from rest and then reaches it’s ‘running speed’. Suppose is
takes 5 seconds for this to occur. During this time, there is an angular acceleration, which
means the horse must be putting our more force than what we computed above. It has to
counteract the frictional torque present and more in order to accelerate the wheel up to its
running speed. We’re going from rest to an angular speed of 0.75 rad/s in an interval of 5
seconds, so this corresponds to an angular acceleration of α = ∆ω/∆t = (0.75 rad/s)/(5 s) =
0.15 rad/s2.

How much torque does the horse have to generate to do this?
∑

τ = Iα. Let τ be the torque
the horse is creating. We still have the 523 N m of frictional torque, so τ − 523 = (I)(0.15).
The moment of inertia of the wheel is I = 1

2
MR2 = (0.5)(200 kg)(1.0 m)2 = 100 kg m2 so

τ − 523 = (100)(0.15) or τ = 523 + 15 = 538 N m. Just a little more.

W = τθ so what angle did the wheel turn through during these 5 seconds? It’s starting from
rest and accelerating at 0.15 rad/s2 so θ = θo + ωot +

1
2
αt2 or θ = 0 + 0 + (0.5)(0.15)(5)2 =



1.875 rad (about 107 degrees, or just a bit more than a quarter of the way around the circular
path). W = τθ = (538 N m)(1.875 rad) = 1009 J .


