
PH2213 Fox : Lecture 27
Chapter 11 : General Rotation (cross product)

Rotational Forces : Torque

Observation : Suppose we have bicycle wheel suspended on a stand so that the axle is fixed in place
but the wheel can rotate about that point. We then apply the same magnitude of force at different
locations on the wheel, and at different angles, and observe the resulting angular acceleration of
the wheel.

• outer edge, radially (no effect)

• outer edge, tangent to wheel (considerable
effect)

• outer edge but at an angle now: radial com-
ponent has no effect; only the tangential
component

• change where we apply the force now: move
in close to the axis

• same force but closer in: smaller effect

The angular acceleration is proportional to r (how far out from the axis the force is applied), and is
also proportional to the component of the force tangent (perpendicular) to r⃗.

Define the torque to be:
τ = rFtan = rF sinϕ

where ϕ is the angle between the direction of r⃗
and the direction of F⃗ .
Units: N ·m : (newtons)× (meters)
English: lb · ft (sometimes ft · lb)

Rotational analog to Newton’s Laws:∑
τ = Iα

NOTE: (force) × (distance) is also units of work (energy, joules) so
torque and energy technically represent the same fundamental units,
but by convention, torque is never written as having units of Joules.

That force, acting where it is, will then create rotation about an axis that is perpendicular to the plane
that r⃗ and F⃗ are in.

Is there a vector mathematical operation that takes two vectors and produces a third vector with these
desired properties (the given magnitude and direction we need)?

There is, and it allows us to write the torque equation compactly as: τ⃗ = r⃗ × F⃗ .

Note the × symbol is NOT the same type of multiplication that we saw earlier with the DOT product,
which used the · symbol (and created a SCALAR from two vectors).



Cross Product
The cross product (or vector product of

two vectors A⃗ and B⃗ produces a new vec-
tor with these properties:

• magnitude: AB sinϕ

• direction: perpendicular to the plane
defined by A⃗ and B⃗, with the di-
rection found using the right-hand
rule (starting at the first vector)

WARNING: this means that: A⃗× B⃗ = −B⃗× A⃗, so we have to be careful to keep things in order (unlike
‘normal’ multiplication where the order doesn’t matter).

Provides us with a more
compact way of representing
(and sometimes calculating)

torque: τ⃗ = r⃗ × F⃗



Torque RHR Sign and Angle Practice

Pulley (from earlier example) : a force of FT is applied at the outer radius Ro = 33 cm, and a frictional
force of Ffr (I’d use the symbol fk here...) is present at an inner radius of Ri = 3 cm.

• Torque due to FT : this force is tangent to the circle
so it’s entire magnitude will be Ftan. If that were
the only force present, it would create a counter-
clockwise rotation, so this will be a positive torque:
τFT

= +(0.33 m)(FT ).

• Torque due to the frictional force : this force is
also tangent to the circle, so it’s entire magnitude
will be Ftan. If that were the only force present, it
would create a clockwise rotation, so this will be
a negative torque: τFfr

= −(0.03 m)(Ffr).

Shelf : a shelf is supported by a wire with some force F⃗ and the shelf is connected at the other end
with a frictionless hinge, about which the shelf can rotate. Find the torque due to F⃗ about that axis.

The magnitude of the torque will be τ = rF sinϕ
where ϕ is the angle between the directions
of the two vectors. (Figures like this are why I
don’t use θ in that equation since here θ isn’t the
angle we would directly use.)
Extending each vector to make clear what the
directions of each vector are, we see that ϕ =
180o − θ.
Using the RHR, starting with our fingers pointed
in the direction of r⃗, and curling towards the direc-
tion of F⃗ , we find that we need to hold our hand
so that our thumb is pointing up out of the page
towards us. That’s the +Z (or +k̂) direction, so
this force will create a positive (counter-clockwise)
torque.
τ = +rF sinϕ (or if we want to use the original θ
given in the figure, τ = +rF sin (180− θ).



Another Pulley : axis of rotation at center of pulley

• Torque due to FA = 50 N : this force is being
applied tangentially, so it’s entire magnitude will
be Ftan, and it’s being applied RA from the axis
of rotation. That force alone would cause a CCW
rotation, making it positive: τFA

= +(RA)(50).

• Torque due to FB = 50 N at an angle. Using the
|τ | = rF sinϕ approach this time, the magnitude of
the torque will be τ = (RB)(50 N) sin (60o) and us-
ing the RHR (starting in the r⃗ direction and curling

our fingers towards the F⃗ direction), our thumb is
pointing down into the page, making this a negative
torque: τFB

= −(RB)(50) sin (60
o).

Ruler with Two Forces : axis of rotation at left end of ruler

• Torque due to FB : this force is being ap-
plied perpendicular to the r⃗ vector from
the axis to that point, so it’s entirely tan-
gential. Also, that force alone would cre-
ate a CCW rotation, making this a posi-
tive torque. τFB

= +(rb)(FB) sin (90
o) =

+RBFB.

• Torque due to FA at an angle. Creating the
‘direction of F’ and ‘direction of r’ dotted
lines, we see that the angle between those
two directions will be ϕ = 180− 30 = 150o.
Using the RHR, our thumb ends up point-
ing down into the page, so this is a negative
torque: τFA

= −(rA)(FA) sin (150
o)



Pole with Three Forces : rotating about point C (the center of mass)

The pole is 2 m long, so the CM is 1 m in from each end.

• Torque due to the 65 N force : ZERO since it’s
being applied right at the axis of rotation.

• Torque due to the 56 N force : this force is be-
ing applied 1 m from the axis. Looking at the
drawing, ϕ here would be 30o and the RHR says
this will be a CW (negative) torque, so: τ56 =
−(1 m)(56 N) sin (30o). (Note this time the an-
gle they gave us turns out to be exactly the angle
we need for ϕ.)

• Torque due to the 52 N force : this force is be-
ing applied 1 m from the axis. Looking at the
drawing, ϕ here would be 60o and the RHR says
this will be a CCW (positive) torque, so: τ52 =
+(1 m)(52 N) sin (60o).

Pole with Three Forces : rotating about point P (bottom of pole), this time.

The pole is 2 m long, so the CM is 1 m in from each end.

• Torque due to the 52 N force : ZERO since
it’s being applied right at the axis of rota-
tion.

• Torque due to the 65 N force : this force
is being applied 1 m from the axis at
point P. Looking at the drawing, ϕ here
would be 45o and the RHR says this will
be a CCW (positive) torque, so: τ65 =
+(1 m)(65 N) sin (45o).

• Torque due to the 56 N force : this force is
being applied 2 m from the axis. Looking
at the drawing, ϕ here would be 30o and
the RHR says this will be a CW (negative)
torque, so: τ56 = −(2 m)(56 N) sin (30o).



Example : Determine C⃗ = A⃗× B⃗ given:

• A⃗ = 2̂i+ 3ĵ

• B⃗ = −2̂i+ 4ĵ

What is the angle between those two vectors?

This isn’t just an artificial math example - it would be the exact process we would go through to
determine the torque present on some object:

Suppose we have some object that is mounted so that
it can rotate about an axis (labelled O in the figure).

A force of F⃗ = (−2̂i + 4ĵ) N is applied at a point
whose vector location relative to the axis of rotation
is r⃗ = (2̂i+ 3ĵ) m
What torque does this represent?

The ‘input’ vectors here are in the (X,Y) plane and the cross-product creates a vector perpendicular to

the plane defined by A⃗ and B⃗ so their cross product here must be entirely in the Z direction, and using
the RHR (starting at A and curling towards B) we see if needs to be in the +Z direction, so that gives
us a way to at least partly check our result:

C⃗ = A⃗× B⃗ = (2̂i+ 3ĵ)× (−2̂i+ 4ĵ).

We can use the usual FOIL method to expand out the product, but have to be very careful to keep
everything in original order:

C⃗ = [(2̂i× (−2̂i)] + [(2̂i)× (4ĵ)] + [(3ĵ)× (−2̂i)] + [(3ĵ)× (4ĵ)]

Looking at each term in order:

• (2̂i × (−2̂i) = (2)(−2)̂i × î = 0 since any vector ‘crossed’ with itself will be zero (remember the
magnitude of the resulting vector involves the ‘sine of the angle between the vectors’, so if they’re
the same vector that angle will be zero and sin(0) = 0.)

• (2̂i)× (4ĵ) = (2)(4)̂i× ĵ = 8k̂
(RHR: Starting with fingers pointing towards the X axis, curl towards the Y axis; your thumb
will be pointing in the +Z direction, which is k̂.)

• (3ĵ)× (−2̂i) = (3)(−2)ĵ × î = (−6)(−k̂) = +6k̂
(RHR: Starting with fingers pointing towards the Y axis, curl towards the X axis; your thumb
will be pointing in the −Z direction, which is −k̂.)

• (3ĵ)× (4ĵ) = (3)(4)ĵ × ĵ = 0 (same reason the first term was zero)

Finally: C⃗ = A⃗× B⃗ = 8k̂ + 6k̂ = 14k̂. (Entirely in the Z direction, as argued at the start.)



Let’s use that to determine the angle between the vectors in the figure.

C = |C⃗| = 14 but it’s also equal to C = AB sinϕ so:

A = |A⃗| =
√

(2)2 + (3)2 =
√
13

B = |B⃗| =
√
(−2)2 + (4)2 =

√
20

Finally then: C = AB sinϕ so 14 =
√
13
√
20 sinϕ which leads to sinϕ = 0.8682... and finally ϕ = 60.3o

(which seems at least plausible, looking at the figure).

WARNING: the ‘angle between the vectors’ is always in the range from 0o to +180o, but the inverse
sine function on your calculator always returns an angle between −90o and +90o. If you’re interested
in finding the angle between two (potentially 3-D) vectors, it’s best to stick with the dot product. That
involves the cosine function, and the inverse cosine will yield an angle in the 0 to 180 deg range, as
needed.



A meter-stick is suspended from one end and can ro-
tate freely about that point. If it’s released at rest
in position A, determine the (initial) angular acceler-
ation of the stick.
(Also: show why α is NOT CONSTANT here, so we
can’t use angular equations of motion to determine
the angular speed when the stick swings down to the
vertical position. We were able to use CoE last time
to determine that, at least.)

Note: model the ‘ruler’ as a long thin rod of mass M and
length L, rotating about one of it’s ends. Consulting the
table of moments of inertia, we see I = 1

3
ML2 for this

geometry.

Our object is rotating about an axis coming up out of the page at the pivot point (the left end of
the stick). Our angular acceleration and torque are technically vectors, but remember for rotation the
vectorness is represented by the axis about which the rotation is occurring. So

∑
τ⃗ = Iα⃗ means that

the sum of all the torques about the Z axis is creating an angular acceleration about the Z axis, with
the proportionality constant being the moment of inertia (about the Z axis also, of course).

Technically every force present may also be introducing a torque, since τ⃗ = r⃗× F⃗ . We have the force of
gravity acting downward on the object, but we also have forces acting at the pivot the stick is rotating
about. Fortunately, those forces are acting right at the axis of rotation, so when we try to calculate the
torques they are creating, τ = rF sinϕ and since these forces are right on top of the axis of rotation,
r = 0 for them, meaning τ = 0 also.

The only force affecting the rotation here is F⃗g = Mg⃗.

We don’t have a point mass here: the mass of the stick is uniformly distributed all along it’s length,
and each of those mass elements is introducing it’s own amount of torque.

If we break the object into a large number of tiny
pieces of mass mi located at some distance ri from
the axis of rotation, then each mass fragment is
creating a torque of τ⃗i = r⃗i × (mig⃗).
The total torque that all of these mass fragments
are creating then is:
τ⃗ =

∑
τ⃗i =

∑
r⃗i × (mig⃗).

We can shuffle the terms around here a bit:

τ⃗ =
∑

(mir⃗i)× g⃗ and since g⃗ is constant, we can write that as τ⃗ = (
∑

mir⃗i)× g⃗. That remaining sum
though is just Mr⃗cm so τ⃗ = Mr⃗cm × g⃗ or finally:

Torque due to gravity : τ⃗ = r⃗cm × (Mg⃗).

That means that the torque being created by that distributed mass is exactly the same torque that a
point mass located at it’s CM would create. (That’s an EXTREMELY useful generic result that
greatly simplifies a lot of statics and dynamics problems now and later on...)



Here, the CM of the meter stick is right at it’s geometric center, L/2 out from the axis of rotation. r⃗

points directly to the right from the axis to that point. F⃗g points directly downward at that point. The
angle between those two vectors is 90o so the magnitude of the gravitational torque here would be
rF sinϕ = (L/2)(Mg) sin (90o) or just |τFg | = 0.5LMg.

We can use the RHR to determine the sign. Starting with our fingers pointing from the axis out in the
direction of r⃗, we curl our fingers down towards F⃗g, and our thumb is now pointing into the page: this
is a negative torque: τFg = −0.5LMg.

Finally then:
∑

τ = Iα becomes −0.5LMg = (1
3
ML2)α

We can cancel out M from both sides (and one factor of L) leaving us with: α = −3
2
g
L
.

For an L = 1 m meter stick, α = −14.7 rad/s2 (at least right at the beginning).

What would the linear tangential acceleration of a point on the far right end of the meter
stick be?

atan = rα = (L)(−3
2
g
L
) so here atan = −3

2
g . That means that point on the free end starts off

accelerating downward with an acceleration that’s actually higher than g. If a stone or other small
object were placed on that free end, the meter stick would accelerate downward faster than the stone
would, leaving it behind. (Note that this result didn’t depend on L, so any long thin object freely
rotating about one end just due to the torque created by its weight has this feature.)

OK, so we have the angular acceleration at the instant the meter stick is released and it starts swinging
around the pivot point. Why can’t we use angular equations of motion to find, say, how fast it’s
moving after rotating through 90o (which was the version of this scenario we analyzed via conservation
of energy last time)?

The problem is that the angular acceleration isn’t constant here.

Let’s look at the situation a little while later, when
the meter stick has rotated through some angle
θ. What is the gravitational torque now? τFg =
rFg sinϕ and from the figure we see that ϕ = 90o−
θ, so τFg = −L

2
Mg sin (90− θ). That means the

amount of gravitational torque present depends
on what angle the meter stick has rotated through.
Since τ = Iα, a non-constant torque means we
have a non-constant angular acceleration also
and thus we can’t use any of our rotational
equations of motion.

The only mechanism we have that can deal with non-constant accelerations is work-energy or conserva-
tion of energy (like we did with springs earlier). We can use those methods to determine how fast the
meter stick is moving when it passes through the bottom (i.e. after rotating through 90 degrees) but
we have no mechanism to determine how much time it took for the meter stick to get to that point...



Additional Example : An engineer estimates that
under the most adverse expected weather conditions,
the total force on the highway sign (see figure) will be

F⃗ = (2400̂i− 4100ĵ) N , acting at the CM. What torque
does this force exert about the base O?
NOTE: this example uses a ‘trick’ for computing cross
products that is useful for people who have had matri-
ces and are familiar with a matrix operation called the
determinant.

Before we start, let’s think about that force for a moment. It has a (downward) vertical component
that’s probably the force of gravity pulling down on the sign. Wind blowing on the sign will push it
too, with the maximum force occurring when the strongest wind happens to be blowing directly in the
+X.

τ⃗ = r⃗× F⃗ where r⃗ goes from the point about which we want to compute the torque to the point where
the force is being applied.

In this case then, the r⃗ vector will go from the point O to the point labelled CM in the figure. That
represents a ‘displacement’ of 6 in the +Z direction and 8 in the +Y direction, so we would write that

vector as r⃗ = 0̂i+ 8ĵ + 6k̂ (with units of meters).

We have both r⃗ and F⃗ in unit-vector notation, and we can put these components into a matrix as shown
below. Conveniently, if we take the determinant of this matrix (expanding it along the top row), the
operations involved are identical to the various multiplications that appear in the cross product:

τ⃗ = r⃗ × F⃗ =

∣∣∣∣∣∣
î ĵ k̂
rx ry rz
Fx Fy Fz

∣∣∣∣∣∣ =
∣∣∣∣∣∣

î ĵ k̂
0 8 6

2400 −4100 0

∣∣∣∣∣∣
or:

τ⃗ = î[(8)(0)− (−4100)(6)]− ĵ[(0)(0)− (2400)(6)] + k̂[(0)(−4100)− (2400)(8)]

τ⃗ = 24600̂i+ 14400ĵ − 19200k̂ (in units of N m).

(Note : If we don’t want the sign and pole to rotate at all, we’ll need
∑

τ⃗ = 0 (along with
∑

F⃗ = 0),
which means that the various bolts and welds and whatever that are connecting the pole to the ground
will need to exert a torque exactly the opposite of what we just found. That’s a topic for Chapter 12
though!)


