
Chapter 21 Examples : Electric Charge and Electric Field

Key concepts :

• Charge can be either negative or positive, and is measured in units of Coulombs (C)

• For normal matter, all the way down to individual protons and electrons, all charges are integer
multiples of e = 1.602× 10−19 C

• Each electron has a charge of −1e and each proton has a charge of +1e

• Coulomb’s Law : the magnitude of the force between two point charges q1 and q2 is given by
F = k q1q2

r2
. Charges of the same sign repel each other; charges of opposite sign attract.

• Electric field from a point charge Q: E⃗ = kQ
r2
r̂

• E⃗ can be used to determine the force that some new charge q will feel in its presence: F⃗ = qE⃗

• Matter can usually be characterized as being somewhere between a conductor and an insulator.

– Conductors are materials with a lot of loosely-bound electrons which can flow easily through
the material

– Insulators are the opposite: the electrons in their atoms and molecules are tightly bound
and do not flow easily

General Suggestions throughout the course :

• Draw good pictures!

• Common constants are given in tables at the very beginning and end of the book.

• Common results from trig and calculus are given in the appendices.

• Watch out for units. All our equations involve standard metric units (seconds, Newtons, meters,
kg, etc). Is the information in a problem given in these units? Are the answers requested in
these units or something else?

• Watch out for how they give and ask for information.

– Do they provide a diameter or circumference when you really need a radius?

– A full Coulomb is a lot of charge, so charges are often given in problems as

∗ milli-coulombs : 1 mC = 1× 10−3 C

∗ micro-coulombs : 1 µC = 1× 10−6 C

∗ nano-coulombs : 1 nC = 1× 10−9 C

• Recall Newton’s Laws: forces are vectors, so watch out for directions and angles, if appropriate.
You may need to convert the force magnitude into x and y components based on the geometry
of the problem.



Charge in a Lightning Bolt : Lightning occurs when there is a flow of electric charge (principally

electrons) between the ground and a thundercloud. The maximum rate of charge flow in a lightning
bolt is about 20, 000 C/s and the bolt lasts for 100 µs or less.

(a) How much charge flows between the ground and the cloud in this time?

The amount of charge will be the rate multiplied by the time interval. A microsecond is a millionth
of a second, so:

Q = (20, 000 C/s)× (100× 10−6 s) = 2.0 C

(b) How many electrons flow during this time?

The number of electrons would be this amount of charge divided by the charge per electron:

ne =
Q
e
= 2.0 C

1.602×10−19 C/electron
= 1.25× 1019 electrons

(That sounds like a lot, but as we’ll see in a later problem, even a microscopic amount of matter will
contain that many electrons...)



Electric Force (1) : A point charge of q1 = +2.0µC is located at x = 0, y = 0.3 m and a second

point charge of q2 = −2.0µC is located at x = 0, y = −0.3 m. What are the (a) magnitude and (b)
direction of the total electric force that these charges exert on a third point charge of q3 = +4.0µC
located at x = 0.4 m, y = 0? (Use a coordinate system with +X horizontal to the right and +Y
vertically upward on the page.)

The situation as described is shown in the left figure below, with the directions of the force vectors
acting on the third charge. (Remember: like charges repel each other, and opposite charges attract.)
Since the magnitudes of q1 and q2 are the same and they are at the same distance from q3, the
magnitudes of the two force vectors will be identical. Also, from the geometry here, all those angles
labelled θ are the same angle.

The right side of the figure highlights the force vectors themselves. Since the magnitudes and angles
are the same, we can see that the x components of these two forces will cancel each other out, and
the y components will be the same value, producing an overall force that is directed in the negative y
direction. (So right away we know the angle of this net force: it will be straight down, which would
be an angle of 270o in the usual polar convention of measuring angles counter-clockwise around from
the +X axis.

Note: the labels on the forces are different from what the book would use. The subscript
just refers to the charge that is exerting that force on charge number 3.

The magnitude of each of the forces can be found from F = k qaqb
r2

. We have the coordinates of all the
charges and in this case they form nice right triangles and the radius will just be the hypotenuse of
the triangles, or r =

√
.32 + .42 = .5m.

The magnitude of each force then would be: F = (9× 109) (2×10−6)×(4×10−6)
0.52

= 0.288 N .

The magnitude of the y component of each force then would be (0.288 N) sin θ = (0.288) × 0.3
0.5

=
0.1728 N .

Each force has this same y component and both are directed downward so the overall force in the y
direction will be of magnitude 0.3456 N and in the −Y direction.

The total force in the X direction we already argued to be zero, so the overall magnitude will be
F =

√
F 2
x + F 2

y = 0.3456 N , with a direction of 270o CCW from the X axis (in the usual polar

convention). Depending on how the question was worded, other answers might be −90o (still in the
usual polar convention), or perhaps 90o clockwise from the +X axis...



Electric Field (1) : Given a point charge q1 = −4.00nC at the point x = 0.6 m, y = 0.8 m and

a second point charge q2 = +6.00nC at the point x = 0.6 m, y = 0 m, calculate the magnitude and
direction of the net electric field at the origin due to these two charges.

Here we need to compute the vector electric fields due to each charge and add them (as vectors) to
produce the net electric field at the desired location (the origin). We don’t have any nice symmetries
we can take advantage of here, so we’ll just have to brute-force it.

The electric field due to a point charge is equal to E⃗ =
k q
r2
r̂. where q is the charge, r is the distance from our

point of interest to the charge, and r̂ is a unit vector
pointing outwards from that charge.

• q1 : r̂ is pointing outward from that charge, but
the charge itself is negative so the electric field is
pointing inward towards the negative charge.

• For q2, we have r̂ pointing out away from the charge
and the charge itself is positive, so overall the elec-
tric field due to q2 is pointing away from that
charge.

The two E⃗ involved are sketched in the figure.

Calculating E⃗1 : This field will have a magnitude of |E| = |kq/r2|. Given the coordinates of the

charge, we see that the distance from the desired location (the origin) is the hypotenuse of that

triangle, so r =
√
(0.6)2 + (0.8)2 = 1.00 m. |E1| = (9 × 109)(4.0 × 10−9)/(1.0)2 = 36.0 N/C. Let θ

be the angle between the +X axis and the vector E⃗1. The î component of E⃗1 will be |E1| cos θ =

(36.0 N/C)0.6
1.0

= 21.6 N/C. The ĵ component of E⃗1 will be |E1| sin θ = (36.0 N/C)0.8
1.0

= 28.8 N/C.

Overall, then, E⃗1 = (21.6̂i+ 28.8ĵ) N/C .

Calculating E⃗2 : This field will have a magnitude of |E| = |kq/r2|. Given the coordinates of the

charge, we see that the distance from the desired location (the origin) to the charge is just 0.6 m,
so: |E2| = (9 × 109)(6.0 × 10−9)/(0.6)2 = 150.0 N/C. From the figure, this field should be pointing

entirely in the negative X direction, so in vector notation this would be: E⃗2 = −150̂i N/C .

Total Electric Field : We can now add these vectors to

find that E⃗ = E⃗1+ E⃗2 = (−128.4̂i+28.8ĵ) N/C. This is
roughly sketched in the figure. We can find the angle θ
inside the triangle from: tan θ = 28.8/128.4 or θ = 12.6o.
The usual polar convention is to measure angles CCW
around from the +X axis though, so the ‘right’ angle
answer here would be 180− 12.6 = 167.4o.



Electric Force (2) : A charge q1 = +5.00 nC is placed at the origin of an xy-coordinate system,

and a charge q2 = −2.00 nC is placed on the positive x-axis at x = 4.00 cm. A third particle, of
charge q3 = +6.00 nC is now placed at the point x = 4.00 cm, y = 3.00 cm.

Find the x and y components of the total force exerted on the third charge by the other two, then
convert to magnitude and direction.

The geometry of the situation is shown
in the figure, along with the directions of
the forces that will be acting on the third
charge. It will be repelled by q1 since they
are both positive charges, and will be at-
tracted towards q2 since they are of op-
posite sign. We can compute the magni-
tude of each force from F = k qaqb

r2
, resolve

those into components, and then combine
the two forces to get the total force act-
ing (as a vector), which then can finally be
converted into a magnitude and direction.
Whew.

F⃗1, the force between the two positive charges, will have a magnitude of |F1| = k q1q3
r2

where r is the
distance between those two. We know the coordinates of all the charges here, so we recognize that
distance as the hypotenuse of a triangle with sides of 3 cm and 4 cm so here r =

√
32 + 42 = 5 cm =

0.05 m. The magnitude of the force between charges 1 and 3 then is:

F1 = (9× 109) (5×10−9)(6×10−9)
0.052

= 1.08× 10−4 N .

We need to resolve this into components. F1x = F1 cos θ
and we see that the angle we need is the same as the
marked interior angle of the triangle, so F1x = (1.08 ×
10−4 N)(4

5
) = 8.64× 10−5 N . Similarly, F1y = F1 sin θ =

(1.08× 10−4 N)(3
5
) = 6.48× 10−5 N . Overall then:

F⃗1 = (8.64× 10−5î+ 6.48× 10−5ĵ) N .

F⃗2 is easier to deal with, since it is directed exactly downward (the negative ĵ direction). The magnitude

will be |F2| = k |q2q3|
r2

= (9× 109) (2×10−9)(6×10−9)
0.032

= 1.2× 10−4 N , so F⃗2 = (−1.2× 10−4ĵ) N .

The problem asked us to compute the x and y components of the total force, so:
Fx = F1x + F2x = 8.64× 10−5 + 0 = 8.64× 10−5 N .

Fy = F1y + F2y = 6.48× 10−5 − 1.2× 10−4 = −5.52× 10−5 N .

continued...



We need to convert these components into an overall
magnitude and direction now. The magnitude will just
be F =

√
F 2
x + F 2

y = 1.02 × 10−4 N . To find the angle,

we’ll sketch out what this total force looks like. It has a
positive X component and a negative Y component, so
it appears as in the figure. Using just the magnitudes
of these components and treating the triangle as just a
plain old triangle: tan θ = |Fy |

|Fx| =
5.52×10−5

8.64×10−5 = 5.52/8.64 =
0.6489 from which θ = 32.6o, which we could describe as
32.6 degrees below the X axis. (In proper polar notation,
the angle would be either −32.6o or 360−32.6 = +327.4o.



Electric Force (3) : Replacing Gravity with Electric Force :

A silly example, but imagine a parallel universe where there is no gravity, but where the electric force
has the same properties as in our universe. In this parallel universe, the sun carries charge Q, the
earth carries charge −Q and the electric attraction between them keeps the earth in orbit. The earth
in the parallel universe has the same mass, the same orbital radius, and the same orbital period as in
our universe. Calculate the value of Q. Consult appendix F as needed.

The earth is moving in a circular path, so there is a centripetal acceleration of ac = v2/R directed
towards the Sun (R being the distance from the Earth to the Sun). We can find the speed v from
the fact that it takes the Earth 1 year to draw out a circle of radius R, so v = 2πR

T
. We’ll leave

everything symbolic for now until we get to the end. If there is an acceleration, there must be a force
of magnitude ma producing it. For this problem, we’re told to assume that this force is coming from
the electrical attraction of the oppositely charged Earth and Sun, so from Coulomb’s Law: F = k q1q2

r2

becomes F = kQ2

R2 directed inward, just as the acceleration is. In terms of magnitudes, then, F = ma
becomes:

kQ2

R2 = Mev
2/R = Me × (2πR

T
)2)/R.

Shuffling terms around and cancelling where we can, we end up with:

Q =
√

4π2MeR3

kT 2 .

From the tables at the end of the book the mass of the earth is Me = 5.97×1024 kg, the distance from
the earth to the sun is R = 1.5 × 1011 m, and the period is T = 365.3 days × 86400 s

1 day
= 3.16 × 107 s,

leading to Q = 2.98× 1017 C.



Electric Force (4) : Unbalanced Charge

Suppose we have two aluminum spheres, each with a mass of 0.025 kg separated by 80 cm. The atomic
mass of aluminum is 26.982 gm/mole and the atomic number of Al is 13.

(a) First, how many electrons are there in each sphere?

The atomic number of aluminum is 13, which means that each atom has 13 protons (in the nucleus),
13 electrons, and various numbers of neutrons (in the nucleus), producing various different isotopes of
Al).

So we know each atom has 13 electrons. How many atoms are there in each sphere? The atomic mass
is given as 26.982 gm/mole (that’s one of the numbers given in a periodic table), which means that
1 mole of aluminum atoms has a mass of 26.982 grams (or 0.026982 kg). One mole represents one
Avogadro’s number worth of something: i.e. NA = 6.022× 1023 things.

Now we can convert the mass of the sphere into how many atoms are present:

(0.025 kg)× ( 1 mole
0.026982 kg

)× (6.022× 1023 atoms
mole

) = 5.58× 1023 atoms

Each of these atoms has 13 electrons, so multiplying by 13 we end up with 7.25× 1024 electrons.

(b) How many electrons do we need to move from one sphere to the other to produce a
(metric) ton of force between them?

Note: one metric ton is the weight of 1000 kg of material here on the surface of the earth, so W =
Fg = mg = (1000 kg)(9.8 m/s2) = 9800 N . (For comparison, converting newtons to pounds, this
represents a weight of 2204.6 pounds, about 10% more than an English-unit ton.)

We’re going to move some electrons from one of the spheres to the other, which means that one
of them will have a charge of +Q and the other will have a charge of −Q. The force between
them will be F = kq1q2/r

2 = −kQ2/r2. We desire the magnitude of this force to be 9800 N so
9800 = kQ2/r2. The balls are 80 cm apart (center to center), so r = 0.8 m, and k = 9× 109 N m2/C2

so: Q2 = (9800)(r2)/k = (9800)(0.8)2/(9× 109) from which Q = 8.35× 10−4 C.

How many electrons does this represent? Each electron has a charge of e = 1.602×10−19 C. The total
charge Q will be the number of electron n times this, so:

n = Q/e = (8.35× 10−4C)/(1.602× 10−19C/electron) = 5.2× 1015 electrons.

That sounds like a huge number (and it certainly is) but in the previous part we found that each
sphere held 7.25 × 1024 electrons, so actually this is a very tiny fraction of the number of electrons
present: less than one part in a billion, in fact.

An electrical imbalance of just one part in a billion has resulted in a (metric) ton of force
between the two small spheres, illustrating just how strong the electric force is compared
to gravity.



Electric Force (5) : Static Electricity: Charged Party Balloons

Suppose we take two balloons and rub them to generate some excess charge, then hang them from
the ceiling as shown in the figure. We see that they hang at a particular angle. Each balloon has a
tiny mass, so if we look at all the forces acting on one of them, we have gravity pulling downward, the
electric force repelling them, and some tension in the string.

Suppose we charge up each balloon with the same charge Q, hang them on strings that are 1 meter
long, each balloon has a mass of 1 gram, and we observe that the strings make an angle of 30 degrees
with respect to the vertical.

How much charge Q is on each balloon?

Let’s apply Newton’s Laws to the balloon on the left. We
draw the three forces acting on it and since the balloon is
now just hanging there motionless, we know that ΣF⃗ = 0
which means that separately the X and Y components of
the forces must add to zero.

In the X direction, we have the electric force to the left,
a component of the tension to the right, and nothing
from gravity since it’s force is vertically downward. So:
−Fe + T sin θ = 0 or Fe = T sin θ .

In the Y direction, we have a component of tension up-
ward and gravity downward, so T cos θ − mg = 0 or
mg = T cos θ .

If we just divide the first boxed equation by the second,
the tension variable will cancel out: Fe

mg
= T sin θ

T cos θ
or Fe

mg
=

tan θ.
We can rewrite this as Fe = mg tan θ.

The electric force will be Fe = kq1q2/r
2 or here Fe = kQ2/r2 so substituting in that expression we

have kQ2/r2 = mg tan θ or solving for Q (what we’re looking for) we have:

Q2 = mgr2 tan θ/k which we’ll be able to use to determine the charge, since we know all the quantities

on the right-hand side.

r is the distance between the balloons (well, their centers, since with spherically symmetric charge
distributions, we can pretend that all the charge is located at their centers). How far apart are they?
If the length of the string is L, we see that r = 2L sin θ or we can observe that since each string
has swung out by 30 degrees, the two strings are 60 degrees apart. That gives us a neat short cut
here. From symmetry, we see that all three of the angles must be 60 degrees, meaning we have an
equilateral triangle and thus the two balloons are L (here 1 meter) apart. So r = 1 meter here.

Substituting in all the variables now: Q2 = (0.001)(9.8) tan (30o)(1)2/(9 × 109) = 6.287 × 10−13 or
finally Q = 7.93× 10−7 C or a bit under 1 microcoulomb.



Motion of Charged Particles : Cathode ray tube

Back in the old days before flat-screen TV’s, they were built using a device called a cathode ray tube,
or CRT. (These are still used in some lab equipment such as oscilloscopes.)

Electric fields are used in two places: first, a material is heated up so that it releases electrons and
an electric field is used to accelerate the electrons to a very rapid speed. These electrons then pass
through two electric fields that are oriented perpendicular to one another that will deflect the electrons
so that they strike a particular spot on the screen, causing it to light up. This process happened rapidly
enough that the entire screen could be ‘written’ to 60 times each second, producing a moving picture.

Let’s look at two parts of this device.

(a) Electron Gun : in this part, electrons essen-
tially at rest are accelerated to some speed v over
some distance ∆x.
The electron is accelerating here, so there needs
to be a force to cause that, and an electric field
will create that force.

The electron is going from rest to a final speed v over a distance ∆x. Assuming a constant acceleration,
we have v2 = v2o + 2ax∆x or ax = v2/(2∆x).

This implies a force of F = ma = mev2

2∆x
.

The electric field will create a force of F⃗ = qE⃗ so here Ex = mev2

2q∆x
.

The charge on the electron is negative, so the electric field here in pointing to the left in the figure.

In a real CRT, the final speed is about v = 0.1c = 3 × 107 m/s and this speed is reached in just a
few centimeters, so let’s say ∆x = 0.05 m. The mass of an electron is me = 9.11 × 10−31 kg and the
charge on the electron is q = −1.602× 10−19 C.

Putting all that together, we end up with an electric field of Ex = −51, 200 N/C. (We’ll see in a later
section how this electric field is produced by applying a fairly high voltage across a couple of metal
plates in the electron gun.)

(b) Deflecting the electrons
These fast electrons are now passed through a pair
of metal plates that create an electric field be-
tween them (see example 21-13 and example 21-
16). Suppose we want to bend the path of the
electrons so that they fly off at a 30o angle rela-
tive to their original direction. What electric field
is needed to do this?

The electric field in the Y direction will cause an acceleration in the Y direction: Fy = qEy but
Fy = may so ay = qEy/me.

As the electron passes through this field, there is no force in the X direction, so it’s velocity in the X
direction will remain unchanged. We do have a force in the Y direction though so the electron will



start to build up a velocity in the Y direction: vy = voy + ayt. Since it’s not accelerating in the X
direction, we can determine the time t that the electron is in this field: ∆x = vx∆t so the time will
be ∆t = ∆x/vx.

The initial y velocity was zero, so we can write the final y velocity as vy = ay∆t = ay∆x/vx .

When the electron leaves this apparatus, we need it to be moving at the 30o angle shown in the figure,
so tan θ = vy/vx or vy = vx tan θ.

Look like we have all the pieces now: vy = ay∆x/vx but also vy = vx tan θ so putting these together,

we get: ay =
v2x
∆x

tan θ.

But ay = Fy/me = qEy/me which gives us:

Ey =
mev2x
q∆x

tan θ

If we assume these plates are about 5 cm in size and we want a 30o deflection, (and using vx =
3× 107 m/s as in the first part) we find we need an electric field of about Ey = 59, 100 N/C.

(As noted in the first part, we’ll see this field is created by putting a few thousand volts across the
plates involved. These old school TV’s could be dangerous to work on since such high voltages were
involved...)



Electric Field Calculation : At the center of a semi-circle of charge

The book computes the electric field for various geome-
tries to illustrate the use of calculus, so here’s another
example.
Suppose we take a thin plastic wire place some positive
charge Q uniformly along the wire, then bend it into
a semi-circular shape of radius R as shown in the first
figure.
What will the electric field be right at the center
of the circle?

We’re going to be breaking the wire into a bunch of little
elements that we’ll integrate over, so first let’s pair them
up, as shown in the second figure.
Let’s use a coordinate system with the origin at the center
of the circle, and with +X pointing to the right and +Y
pointing up towards the top of the page.
For each little charge element dq that’s some angle θ
above the X axis, there’s another identical element at
the same angle below the X axis. The electric fields from
these are shown, and we see that the Y components will
cancel out, leaving just the X component. Ultimately
then, we’ll need to do an integral over just the dEx com-
ponents from each little dq element in the object.

So what is the X component of the electric field created
by a given little element, located at some angle θ, for
example? The electric field will have a magnitude of
dE = kdq/r2 and the X component of that vector will

be (dE) cos θ, and given the direction of the dE⃗ vectors
here, it’ll be negative. The total electric field magnitude
at that point then will be Ex = −

∫
cos θdEx or Ex =

−
∫ k

R2 cos θdq.

We have a theta here already, so let’s fiddle with things
so we can integrate over theta. The charge dq in each
little element will be the linear charge density λ times
the physical length of that element: dq = λdl, and the
little arc-length dl we can relate to the angle element as
dl = Rdθ. Ultimately then: dq = λRdθ.
We can rewrite the integral now as: Ex =
−

∫ k
R2 cos θλRdθ



Pulling out all the constants: Ex = −kλ
R

∫
cos θdθ and we’ve arrived at an integral we can do. The

integral of cosine is just sine and what are the limits of integration? Looking at any of the figures,
starting at the bottom of the arc, we’re integrating from θ = −π/2 to θ = +π/2 so

∫
cos θdθ = sin θ

and evaluating this at the integration limits we have sin (π/2)− sin (−π/2) = 1− (−1) = 2.

We’re left now with Ex = −kλ
R
(2) or Ex = −2kλ

R
.

The linear charge density λ is the charge per length, so if we want to put this in terms of the original
charge Q, we can do so. The length of the wire was half the circumference of a circle, so λ = Q/(πR).

Making that substitution, we arrive at the final result, that the electric field at the center of the circle
will be Ex = −2k

π
Q
R2 .

(Note when we did a full circle ‘ring’ of charge, we found E = 0 right at the center, but here we’ve
only got half the circle so we do end up with an electric field at that point.)

Note that all these calculations gave us the electric field at just that one single point: the point
right at the center of the semicircle. We’d have to go through another entire integral process if we
wanted to find the field at any other point, and those integrals would be painful...


