
Chapter 22 Examples : Gauss’s Law

Key concepts:

• Flux is a measurement of how much of something passes through a given area in a given time.
This often appears in the context of fluid motion but can be extended to other fields, including
electricity and magnetism.

• Electric Flux is defined as ΦE = E⃗ · A⃗, giving the flux in units of (N/C) ·m2 or N ·m2/C.

• Gauss’s Law states that if we sum (or integrate) the flux over an entire closed surface, then this
total flux through the closed surface is related to the charge contained within that surface:∮
E⃗ ·dA⃗ = Qencl/ϵo. (Note the little circle in the middle of the integration symbol: that represents

integration over a complete closed surface.)

• By choosing the closed surface cleverly, we can use Gauss’s Law to determine the electric field
for various simple geometries.

A Simple Flux Calculation : A flat sheet is in the
shape of a rectangle with sides of length 0.400 m and
0.600m. The sheet is immersed in a uniform electric field
of magnitude 75.0 N/C that is directed at 20o from the
plane of the sheet. Find the magnitude of the electric
flux through the sheet. (Why can we not determine the
sign of the flux?)

Here, we have a constant electric field cutting through a flat surface, so the flux is just: Φ = E⃗ ·A⃗ where
A⃗ is the vector version of the area. A⃗ has a magnitude equal to the area of the rectangle, and a direction
that is perpendicular to the ‘sheet’. One of our forms for the dot product is Φ = E⃗ · A⃗ = |E| |A| cos θ
where θ is the angle between the two vectors involved. That is NOT the angle they gave us, of course.
They gave us the angle between the electric field and the plane of the sheet, but the angle between
the field and the vector version of the area will be 90 degrees minus this angle, or 70o.

So finally: Φ = (75 N/C) ∗ (0.4 m) ∗ (0.6 m) cos 70o = 6.156Nm2/C.

NOTE: why did they only ask us for the magnitude of the flux, and not the actual signed
value?

Φ = E⃗ · A⃗ which means we’re treating both the electric field and the area as vectors. A⃗ is a vector
whose magnitude is the area, and whose direction is a unit vector perpendicular to the plane formed
by the area element. We have two choices though. If we think of the area as a sheet of paper, which
side of the paper is the unit vector pointing out from? With an isolated area element like this, there’s
no right answer.

The only time (in this context anyway) where the direction is uniquely determined is in the case of
applying Gauss’s Law, which means we have a closed surface surrounding some charges. In that
case, the direction of each little dA⃗ area element is defined to be from the inside of the surface
towards the outside. The area elements in that case are all defined to be pointing ‘outward’.



Applying Gauss’s Law : Flux from a Line of Charge

It was shown in Example 22-6 (Section 22-3) in
the textbook that the electric field due to an infi-
nite line of charge is perpendicular to the line and
has magnitude E = λ

2πϵ0r
. Consider an imaginary

cylinder with a radius of r = 0.250 m and a length
of l = 0.400 m that has an infinite line of positive
charge running along its axis. The charge per unit
length on the line is λ = 6.00µC/m.

(a) What is the electric flux through the cylinder due to this infinite line of charge?

(b) What is the flux through the cylinder if its radius is increased to r = 0.500 m?

(c) What is the flux through the cylinder if its length is increased to l = 0.800 m?

LONG WAY : From symmetry, the direction of the electric field will be perpendicular to the line
(so radially outward or inward - outward in this case, since the charge is positive). Since the cylinder

has the line of charge going right along its center axis, the area elements dA⃗ are also radial. Thus
in the flux integral: ΦE =

∮
E⃗ · dA⃗, we have field and area elements pointing in the same direction.

The angle between them is zero, so the dot product simplifies to: ΦE =
∫
EdA, What about the part

of the integral that involves the flat ‘end caps’ of the cylinder? The vector electric field is pointing
radially outward but the dA⃗ area elements of these flat ends are perpendicular to that direction: they’re
pointing horizontally in the figure. Thus the dot product E⃗ · dA⃗ is zero for all the little area elements
on those flat ends.

The electric field varies only with the distance from the charged line, so if our cylinder has a constant
radius of r, the electric field magnitude is constant and can come out of the integral, leaving: ΦE =
E

∫
dA, but the integral is just the definition of the area of the cylinder, which is 2πrl, giving us an

expression for the flux through the cylinder: ΦE = 2πrlE. Now, the electric field from an infinite line
of charge is E = λ

2πϵor
so substituting in this expression for E gives us our final symbolic ΦE = 2πrl λ

2πϵor

or cancelling some common terms: ΦE = λl/ϵo .

SHORT WAY : According to Gauss’s law, ΦE =
∮
E⃗ · dA⃗ = Qencl/ϵo. That is, the flux through

the closed surface is just equal to the total charge enclosed. If the cylinder is of length l and has a
charge/length of λ, then Qencl = λl so ΦE = λl/ϵo and we’re done.

Our final symbolic derivation showed that, interestingly enough, the flux didn’t depend on r at all:
only on the charge density and the length of the cylinder. Parts (a) and (b) then have the same answer:
ΦE = λl/ϵo = (6.00× 10−6C/m)(0.400 m)/(8.854× 10−12Nm2/C) or ΦE = 2.71× 105Nm2/C.

For part (c), we have changed the length of the cylinder from 0.400 m to 0.800 m, so we could just
plug in this new value for l and recompute ΦE, but we can short-cut the solution here. We doubled
the length, thus exactly twice as much charge is enclosed, so the flux is exactly twice the earlier value:
ΦE = (2)(2.71× 105Nm2/C) = 5.42× 105Nm2/C.



Applying Gauss’s Law : Flux from Some Point Charges

A point charge q1 = 4.00nC is located on the x-axis at x = 2.00 m, and a second point charge
q2 = −6.00nC is on the y-axis at y = 1.00m. What is the total electric flux due to these two point
charges through a spherical surface centered at the origin and with radius (a) 0.500 m, (b) 1.50 m, (c)
2.50 m?

Discussion: The total flux through the Gaussian surface is equal to the enclosed charge divided by ϵo.
It doesn’t matter how the charge is distributed: as long as it is inside, that’s what counts.
(The electric field lines can be quite complex, hitting the surface at odd angles, making the direct

evaluation of the integral ΦE =
∫
E⃗ · dA⃗ very complex, but if the integral is over a closed surface (as

they are in this example), then Gauss’s Law says that the integral is just equal to ΦE = Qencl/ϵo.

HINT: draw the locations of these two charges on an xy graph and then add the various gaussian
surfaces. The first one is so small that neither of the two charges are inside it. The second one is large
enough that q2 is inside but q1 is not. The third one is large enough that both charges are inside.

(a) In this case, neither charge is located inside the sphere, so the total flux through this sphere is
zero.

(b) In this case, the second charge is inside the sphere, but the first charge is outside, so Qencl =
−6.00nC and therefore ΦE = Qencl/ϵo = (−6.00×10−9C)/(8.854×10−12C2/Nm2) = −678Nm2/C.

(c) In this case, both charges are inside the sphere, so Qencl = +4nC − 6nC = −2nC, and the
flux through the sphere will be: ΦE = Qencl/ϵo = (−2.00 × 10−9C)/(8.854 × 10−12C2/Nm2) =
−226Nm2/C.



Electric Field Between Two Lines of Charge

A very long uniform line of charge has charge per unit length 4.80µC/m and lies along the x-axis. A
second long uniform line of charge has charge per unit length −2.40µC/m and is parallel to the x-axis
at y = 0.400m. What is the net electric field (magnitude and direction) at the following points on the
y axis: (a) y = 0.200 m and (b) y = 0.600 m?

Discussion: The electric field from an infinite line of charge is E⃗ = λ
2πϵor

r̂. For positive λ, this will give
us something positive times r̂, meaning that the field will be pointing radially outward from the line.
For negative λ, this will give us something negative times r̂, meaning that the field will be pointing
radially inward towards the line.

(a) This point is located between the two
lines. I’ve annotated the figure to show
the directions of the electric fields created
by each line: radially outward from line 1,
and radially inward towards line 2. At the
point of interest, then, both electric fields
are pointing in the +Y direction.

The magnitude of E1 will be |E1| = |λ1|
2πϵor

where r is the (positive) distance from the line to the
point of interest. Here, the line is at y = 0 and the point is at y = 0.200 m so r = 0.2, giving us:

|E1| = |4.8×10−6|
2π8.854×10−12(0.200)

= 431, 412 N/C.

The magnitude of E2 will be |E2| = |λ2|
2πϵor

where r is the (positive) distance from the line to the point
of interest. Here, the line is at y = 0.400 and the point is at y = 0.200 m so r = (0.4 − 0.2) = 0.2,

giving us: |E2| = |2.4×10−6|
2π8.854×10−12(0.200)

= 215, 706 N/C.

At the point of interest, these fields are both pointing upward, so the total electric field will be
(431, 412 N/C) + (215, 706 N/C) = 647, 118 N/C (in the +Y direction).

(b) The point of interest is now located
above the second line. I’ve annotated the
figure to show the directions of the electric
fields created by each line: radially out-
ward from line 1, and radially inward to-
wards line 2. At the point of interest, E⃗1

will be pointing in the +Y direction, but
E⃗2 will be pointing in the −Y direction.

The magnitude of E1 will be |E1| = |λ1|
2πϵor

where r is the (positive) distance from the line to the
point of interest. Here, the line is at y = 0 and the point is at y = 0.600 m so r = 0.6, giving us:



|E1| = |4.8×10−6|
2π8.854×10−12(0.600)

= 143, 804 N/C.

The magnitude of E2 will be |E2| = |λ2|
2πϵor

where r is the (positive) distance from the line to the point
of interest. Here, the line is at y = 0.400 and the point is at y = 0.600 m so r = (0.6 − 0.4) = 0.2,

giving us: |E2| = |2.4×10−6|
2π8.854×10−12(0.200)

= 215, 706 N/C.

At the point of interest, we can put the signs back into the situation, with E1 having a positive y compo-
nent and E2 being negative, so the overall field here will be (+143, 804 N/C)+(−215, 706 N/C) = −
71, 902 N/C, giving us a magnitude of 71, 902 N/C in the −Y direction.



Electric Field Calculations for Various Geometries

(a) At a distance of 0.200 cm from the center of a charged conducting sphere with radius
0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the center of
the sphere?

We showed, using Gauss’s Law, that a charged conducting sphere produces an electric field
identical to that of a point charge located at the center of the sphere (as long as we are outside
the sphere). So E = kQ/r2. We’re given the field at a given radius, so could use this to
find the charge Q, then use that charge to find the field at the new location, but it’s much
easier to just do this as a ratio problem. Let r be the distance from the center of the sphere.
Then the electric field at r2 can be compared to the electric field at some other distance r1
by: E2/E1 = (kQ/r22)/(kQ/r21) = (r1/r2)

2 or finally: E2 = E1(
r1
r2
)2. In this situation, we

know E1 = 480 N/C at r1 = 0.200 cm and we want to find the field at r2 = 0.600 cm, so:
E2 = (480 N/C)(0.2

0.6
)2 = 53.33 N/C. (Note that since we’re dealing with the ratio of r1 to r2,

we just left each value in units of cm, since the units cancel out.)

(b) At a distance of 0.200 cm from the axis of a very long charged conducting cylinder with
radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the axis
of the cylinder?

Following how we solved part (a), the electric field from a very long conducting cylinder acts just
like a line charge located along the axis of the cylinder, for which the electric field is E = λ

2πϵor

where r is the distance from this line charge to the point of interest. Again setting this up as a
ratio, E2 = E1

r1
r2

for this case, so E2 = (480 N/C)0.2
0.6

= 160 N/C.

(c) At a distance of 0.200 cm from a large uniform sheet of charge, the electric field is 480 N/C.
What is the electric field 1.20 cm from the sheet?

Treating this as an infinitely large sheet, the electric field is E = σ
2ϵo

which is constant and does
not depend on how far we are away from the sheet. Thus the electric field at the new distance
is the same as it was at the original distance: E = 480 N/C still.



Equilibrium Point(s) for a line and sheet of charge

A long line carrying a uniform linear charge density +50.0µC/m runs parallel to and 10.0 cm from
the surface of a large, flat plastic sheet that has a uniform surface charge density of −100µC/m2 on
one side.

Find the location of all points where an α particle would feel no force due to this arrangement of
charged objects.

An α particle is basically a bare helium nucleus, which has a positive charge. The force on any charged
particle in an electric field is given by F⃗ = qE⃗. We are looking for some magic location where the
force is zero, so that is equivalent to finding a point where the total electric field is zero: i.e. where
the (vector) electric field from the line charge and the (vector) electric field from the sheet of charge
exactly cancel one another out.

Let’s look at the situation from a perspective in line with the line charge:

There are several possibilities for where the field might be zero. In the left most figure below, we
consider a point off to the side somewhere. Here, the electric field from the line charge will be radially
outward from it (shown as the vector drawn at the angle). The electric field from the negatively
charged sheet will be straight downward. There is no possible location where these two vectors
can exactly cancel each other out, since the radial vector from the line charge will always have an x
component that the electric field from the sheet charge does not have. Thus if any point exists, it
must be along a line drawn through the line charge perpendicular to the sheet. That leaves us with
three possibilities:

In the second picture, we are between the line and the sheet, but here both electric fields are pointing
down, so cannot cancel each other. In the third picture, we are somewhere above the line. The electric
field from the line is UP and the electric field from the sheet is DOWN, so here we might find a



location where they cancel. In the fourth picture, we are somewhere below the sheet and here the
electric field from the line charge is DOWN and the electric field from the sheet is UP, so again we
could get cancellation.

Now the electric field magnitude from a sheet of charge is constant while the electric field from a line
depends on the distance r we are from the line, so we can solve both cases by setting the two field
magnitudes equal: |Eline| = |Esheet| or: |λ|

2πϵor
= |σ|

2ϵo
from which: r = |λ|/(π|σ|) or r = 50µC/m

π100µC/m2 =
0.159 m or 15.9 cm.

At this distance directly above or below the line of charge, the two fields will cancel.



Flux due to a given (varying) electric field

Suppose we know that in some region, the electric
field is given by E⃗ = (10x)̂i + 5ĵ + 20k̂ (with the
constants having whatever units we need so that
E comes out in the standard metric units of N/C).
(Note that Ex varies with x, so this electric field
is not constant.)

Compute the flux out through each side of a cube
that is 3 meter along each side, with one corner
at the origin and the other sides aligned along
the coordinate axes, as shown in the figure. The
various sides are named in the figure.

This looks more complicated than it is. Recall in the earlier examples that when E⃗ is constant,
ΦE = E⃗ · A⃗, and the dot product is essentially picking out just the component of E⃗ that is in the same
direction as the area vector A⃗.

Here, we have a varying electric field, so will need to use the integral version of the flux: the flux
through some surface can be computed as ΦE =

∫
E⃗ ·dA⃗ but let’s do whatever we can do avoid having

to actually do any integrals...

Top surface : On this surface, the little dA⃗ area elements will be entirely in the Z direction, so

will only have a k̂ component. When we do the dot product inside the integral then, only the k̂
component of E⃗ will survive. It’s X and Y components will be gone so we can write this integral as
just

∫
EzdAz. The Z component of E is constant though (Ez = 20), so it comes out of the integral:

ΦE = Ez

∫
dAz. Ez = 20 and the integral now just represents the area of the top. It has a magnitude

of 9 square meters and it pointing in the +Z direction, so Az = +9 and the integral just reduces to
ΦE = (20 N/C)(+9 m2) = +180 N m2/C.

Bottom Surface : In this case, when we break this surface into little dA⃗ elements, they’re all pointing
exactly in the negative Z direction, so again when we do the dot product with the electric field vector,
the only term that will survive will be the Z component of E⃗ :

∫
E⃗ · dA⃗ =

∫
EzdAz. Ez = 20 which is

constant, so comes out of the integral, leaving ΦE = (20)
∫
dAz but the integral is just the area of the

bottom, which has a magnitude of 9 m2 and it pointing in the negative Z direction, so
∫
dAz = −9 m2.

The flux through the bottom surface then is just ΦE = (20)(−9) = −180 N m2/C.

Front Surface : In this case, the dA⃗ elements are all pointing in the positive X direction, so will
only have components in the (positive) î direction and thus will only pick up the X component of the

electric field along that surface. Any component of E⃗ in the Y or Z directions will be eliminated by the
dot product. If we look at how E⃗ varies though, at x = 3, Ex = 10x = (10)(3) = 30 which is constant,

so will come out of the integral again. ΦE =
∫
E⃗ · dE⃗ =

∫
ExdAx = Ex

∫
dAx. The integral represents

the area of the front surface. As a vector, it’s pointing in the +X direction, so
∫
dAx = +9 m2 and

finally the flux integral just reduces to ΦE = (30 N/C)(+9 m2) = +270 N m2/C.



Back Surface : In this case, the dA⃗ elements are all pointing in the negative X direction, so will
only have components in the (negative) î direction and thus will only pick up the X component of the

electric field along that surface. Any component of E⃗ in the Y or Z directions will be eliminated by
the dot product. If we look at how E⃗ varies though, at x = 0, Ex = 10x = (10)(0) = 0 and we can
stop there since the integrand is zero, making the overall integral zero as well. The flux through the
back surface is just zero.

Left surface : In this case, the dA⃗ elements are all pointing in the negative Y direction, so will only
have components in the (negative) ĵ direction and thus will only pick up the Y component of the

electric field along that surface. Any component of E⃗ in the X or Z directions will be eliminated by
the dot product. Fortunately, Ey = 5 N/C which is constant so will come out of the integral, making

this one trivial also:
∫
E⃗ · dA⃗ =

∫
EydAy = Ey

∫
dAy and the integral is just the (signed) area of that

side, which will be −9 m2 so the integral reduces to (5 N/C)(−9 m2) = −45 N m2/C.

Right surface : In this case, the dA⃗ elements are all pointing in the positive Y direction, so will

only have components in the (positive) ĵ direction and thus will only pick up the Y component of the

electric field along that surface. Any component of E⃗ in the X or Z directions will be eliminated by
the dot product. Again, Ey = 5 N/C which is constant so will come out of the integral, making this

one trivial also:
∫
E⃗ · dA⃗ =

∫
EydAy = Ey

∫
dAy and the integral is just the (signed) area of that side,

which will be +9 m2 so the integral reduces to (5 N/C)(+9 m2) = +45 N m2/C.

Summary

1. Flux through the top surface +180 N ·m2/C

2. Flux through the bottom surface −180 N ·m2/C

3. Flux through the back surface 0 N ·m2/C

4. Flux through the front surface +270 N ·m2/C

5. Flux through the left surface −45 N ·m2/C

6. Flux through the right surface +45 N ·m2/C

Charge Enclosed

If we add up the flux through all six sides, we’ve created a closed surface so can use Gauss’s Law to
compute how much charge there must be inside the cube.

∮
E⃗ · dA⃗ = Qenc/ϵo or Qenc = ϵo

∮
E⃗ · dA⃗.

Adding up all the fluxes we just computed, the total flux is 180−180+0+270−45+45 = +270 N m2/C
so or Q = (8.854× 10−12)(270) = +2.4× 10−9 C or +2.4 nC.

We can’t say any more than that (like exactly how the charge is spread out), but at least we know
that the total charge inside that cube is the given value.


