
Chapter 23 Examples : Electric Potential

Key concepts:

• Electric potential is defined as the electric potential energy per unit charge. Since potential
energy has a variable reference level, we define the electric potential difference between two
points ‘a’ and ‘b’ as the difference in potential energy of a test charge placed at those points,
divided by that test charge:

Vba = Vb − Va =
1
q
(Ub − Ua)

• Potential differences are measured in joules per coulomb, also called volts.

• The change in potential energy of a charge q when it moves through a potential difference Vba is
∆U = qVba.

• Vba = Vb − Va = −
∫ b
a E⃗ · d⃗l

This comes from the corresponding definition of potential energy change as a charge q moves
from position a to position b:

Uba = Ub − Ua = −
∫ b
a F⃗ · d⃗l = −q

∫ b
a E⃗ · d⃗l

• Point charge: if we define the electric potential to be 0 when infinitely far away from the point,
then V = kQ/r.

• Electric potentials from distributions of charges can be found by summing or integrating V
over all the (point) charge elements. NOTE that unlike E⃗, the potential V is a scalar so we
don’t have to worry about components.

• Ring of charge (along axis perpendicular to the plane of the ring, passing through the center of
the ring): V = kQ/

√
x2 +R2

• Charged circular disk (same axis as above): V = Q
2πϵoR2 (

√
x2 +R2 − x)

• Relating the electric field to the gradient of the potential

E⃗ = −∇⃗V = −(∂V
∂x
î+ ∂V

∂y
ĵ + ∂V

∂z
k̂)

• Note: the electrical potential energy UE becomes just another term in our various work and
conservation of energy equations: (K + UE + · · ·)b = (K + UE + · · ·)a +Wother

The electric potential (voltage) is the electrical potential energy per charge: V = U/q. Compared to
gravity, this would be as if we defined something called ‘gravitational potential’ equal to the gravita-
tional potential energy per mass: Ug/m. Near the earth, Ug = mgh so this ‘gravitational potential’
near the earth would be Ug/m = gh. Recall from PH2213 that g = GMe/R

2
e so essentially this ‘poten-

tial’ construct condenses all the geometry and everything else we need to compute the actual potential
energy, except for the mass of the object we’re interested in. This doesn’t have much utility in the
case of gravity, but does in the case of electricity since if we connect a series of conductors, they’ll all
be at the same potential (voltage level).



Electric Potential and Surface Charge Density on a sphere

A conducting sphere of diameter 32 cm is charged to 680 V (relative to V = 0 at infinity, the usual
reference point for V ).

(a) What is the surface charge density σ on the sphere?

From example 23-4: V = kQ/r so Q = V r/k = 4πϵorV , which we could use to find the charge on
the sphere, then divide by the surface area of the sphere to determine the charge density.

Since we’re ultimately looking for charge density σ, let’s keep this symbolic for one more step:
σ = Q/A = Q/(4πr2) but above we found that Q = 4πϵorV so substituting that expression in for Q,
we get a lot of cancellation, leaving us with:

σ = V ϵo/r

Note: this is just one example of why many electrical-related equations end up preferring to use the
ϵo constant instead of k. If we had left this in terms of k, we’d have an extra 4π in the equation:
σ = V/(4πkr). In this case, the version of the equation that used ϵo was ‘cleaner’, and this happens
often enough that many equations will use it instead of k (even though k is easier to remember!)

Applying this to the values we have here: σ = V ϵo/r = (680)(8.85×10−12)/(0.16) = 3.761×10−8 C/m2

(b) At what distance from the center of the sphere will the potential due to the sphere
be only 25 V ?

V = kQ/r so we could just plug in the desired voltage and compute Q from the surface charge density
and then find the distance r needed.

It’s much simpler to just do this as a ratio problem: V = kQ/r so the voltage is inversely proportional
to the distance. Equivalently, that means that the product V r is constant.

At the surface of the sphere, we have a known radius of 0.16 m and a known voltage of 680 V and
that product is a constant, so let’s use that:

(680 volts)(0.16 m) = (25 volts)(r) or r = (0.16)(680)/(25) = 4.35 m

(c) How much charge is on the sphere?

σ = Q/A so Q = σA = σ(4πr2) = (3.761 × 10−8 C/m2)(4π(0.16 m)2) = 1.21 × 10−8 C or just 12.1
nanocoulombs. A fairly small amount of charge on the sphere represented a 680 V voltage.

(d) How strong is the electric field just outside the sphere?

From Gauss’s law, we have a nice spherical symmetry here, so the electric field will be radial and of
magnitude E = kQ/r2 = (9× 109)(1.21× 10−8)/(0.16)2 = 4254 V/m.



Electric Potential : Connecting two conductors

Suppose we have a spherical conductor of radius r1 and charge Q. A second (initially uncharged)
spherical conductor of radius r2 is now connected to it by a long wire.

(a) After the connection, what can you say about the potential of each sphere?

They have to be the same; otherwise current would flow until they are the same. This is an important
general concept: with any set of connected conductors, once the charge has been given time to
redistribute (which happens quickly) all of them, and every part of them, will be at the same voltage.

(b) How much charge was transferred from the first sphere to the second? (Assume they’re
far enough apart they don’t influence each other.)

Let’s say ∆Q is the amount of charge that has moved from ball 1 to ball 2. After the connection is
made and the charges redistribute, ball 1 will have charge of Q−∆Q and ball 2 will have a charge of
0 + ∆Q.

Generically V = kQ/r from a point/sphere geometry so let’s look at the potential (i.e. voltage) of
each sphere after the charge has redistributed:

V1 = k(Q−∆Q)/r1 and V2 = k(∆Q)/r2.

From the first part of the problem though, now that the two spheres are connected by the conducting
wire, the two spheres have to be at the same voltage, so: V1 = V2 or k(Q −∆Q)/r1 = k∆Q/r2. We
can cancel out the k right away, leaving: (Q−∆Q)/r1 = ∆Q/r2.

Rearranging this to solve for ∆Q, we find:

∆Q = Q r2
r1+r2

If r1 (the radius of the original charged sphere) is very small compared to r2 (i.e. a tiny charged ball is
brought in contact with a much larger object), the fraction is approaching 1, so nearly all the charge
would transfer (big spark). Even if the two objects are of comparable size, the ∆Q will be a significant
fraction of the original charge. (The sort of thing that happens when you walk across the floor and
touch a car or a metal doorknob...)

(c) How does the new (common) voltage compare to the original voltage?

Initially sphere 1 (of radius r1 had some charge Q on it, and sphere 2 was uncharged.

The initial voltage on sphere 1 then was: Vinitial = kQ/r1.

After they are connected, the voltages on the two spheres is the same. Using the formula for sphere
2, we have Vnew = k∆Q/r2 but ∆Q = Q r2

r1+r2
so Vnew = k Q

r2
r2

r1+r2
= kQ 1

r1+r2

We can write this as: Vnew = kQ
r1

r1
r1+r2

or finally as Vnew = Vinitial
r1

r1+r2
.

The denominator is always larger than the numerator, so the voltage will always be less after the
two spheres are connected. If the initial charged sphere is much smaller than the other one, the new
voltage will be much lower than the initial voltage (and we found in the previous part that this is the
case where the most charge flows too). This means we have lots of electrons moving across a large
potential difference (making a big spark).



Electric Potential : Partially hollowed-out sphere

A hollow spherical conductor carrying a net charge of +Q has an inner radius r1 and an outer radius
r2 = 2r1. At the center of the sphere is a point charge +Q/2. Determine the electric field and
the potential everywhere.

Before we go any further, where is the charge actually located?

This partially hollowed-out sphere is a conductor.
We have +Q/2 at the very center, which will in-
duce a charge of −Q/2 on the inner surface of the
sphere (i.e. spread around at r = r1 ). We’re told
that the spherical conductor has a total charge of
+Q which means the outer surface of the conduc-
tor must have a charge of +1.5Q so that, when
combined with the −0.5Q induced on it’s inner
surface, it will have an overall net charge of the
+1.0Q that they specified.

Electric Fields

We have spherical symmetry here, so per Gauss’s Law, the field E is the same as that due to a point
charge equal to the net enclosed charge: E = kQencl/r

2.

• For points completely outside the sphere (i.e. for r > r2):
the total enclosed charge will be: +Q/2 from the point charge plus the −Q/2 on the inner surface
plus the +1.5Q on the outer surface or overall: 1.5Q. Here then: E = kQencl/r

2 = 1.5kQ/r2.

• Within the conducting part of the material (i.e. between r1 and r2):
the electric field will be zero, since we’re inside the conductor itself.

• In the hollow part of the sphere (i.e. r < r1) :
the ‘enclosed charge’ is the +Q/2 located at the center, so the electric field in that hollow part
will be E = kQencl/r

2 = 0.5kQ/r2.

Here’s a rough graph of what E(r) looks like:



(continued...)

Potentials : what is the electric potential (voltage) as a function of r?

Again, spherical symmetry here so we can use V = kQencl/r.

• Outside the sphere (r > r2) :
The total enclosed charge is 1.5Q so V = 1.5kQ/r (or 3

8πϵo

Q
r
)

• Within the conductor (i.e. r1 and r2):
the electric field is zero so V will stay the same as it was on the outer surface: V = 1.5kQ/r2.
All the points in the thick conducting sphere itself will all be at the same voltage.

• In the hollow part (i.e. r < r1):
The potential will be V = kQencl/r + C where C is some constant. Remember that potential
always has a reference level. Starting from the outside of the whole thing, we assumed a reference
level of V = 0 as r goes to infinity.

Every part of the metal sphere is at the same voltage, and we found that value to be V =
1.5kQ/r2, so we know that at r = r1 the potential must still be V = 1.5kQ/r2. That will let us
determine the constant. Qencl = Q/2 in this region, so V (r) = 0.5kQ/r+C but V (r1) = 1.5kQ/r2
(the known voltage of every point of the conductor part of the sphere) so 0.5kQ/r1 + C =
1.5kQ/r2. But in this problem, we have r1 = 0.5r2 so making that substitution, we have
kQ/r2 + C = 1.5kQ/r2 or finally C = 0.5kQ/r2.

Inserting that constant: V = 0.5kQ/r + 0.5kQ/r2 or combining terms:

V = 0.5kQ(1
r
+ 1

r2
).

Here’s a rough graph of what V (r) looks like:



Electric Field and Potential due to two charges

Two point charges, q1 = +3.4µC and q2 = −2.0µC are placed 5 cm apart on the x axis.

(a) At what points along the x axis is the electric field zero?

Let’s consider three regions: A which is to the left of the positive charge, B between the two charges,
and C to the right of the negative charge.

In region A, the electric field from the positive charge is pointing to the left, and the electric field from
the negative charge is pointing to the right, so there’s the possibility of getting them to cancel there
except in this region, the negative charge is farther away, and of smaller magnitude, so the magnitude
of its electric field will be much smaller than the field from the positive charge. There’s no way they
can cancel each other out in that region.

In region B, the electric field from the positive charge is pointing to the right, and the electric field
from the negative charge is also pointing to the right, so there’s no way they can cancel each other in
this region either.

In region C, the electric field from the positive charge is pointing to the right, and the electric field
from the negative charge is pointing to the left, so we might get cancellation somewhere in this region.
The negative charge is weaker, but we can be closer to it than to the positive charge, so there will
definitely be some point where we can get them to cancel each other.

Let x be the coordinate of the point we’re interested in. Then the distance from the positive charge
to that point will be r1 = x. The distance from the negative charge to that point will be r2 = x− 5.

In general, the strength of the electric field will be E = kq/r2 so the total electric field at point x will
be:

E = kq1
x2 + kq2

(x−5)2
and we want to find the x value which makes this zero, so: kq1

x2 + kq2
(x−5)2

= 0

We can divide out the common k, leaving us with: q1
x2 +

q2
(x−5)2

= 0

We don’t really need to convert the charges to coulombs or the distances to meters since all the units
will end up cancelling, so we can write this as:

3.4
x2 + −2.0

(x−5)2
= 0 or 3.4

x2 = 2.0
(x−5)2

Cross multiplying: (3.4)(x − 5)2 = 2x2. Expanding everything out and rearranging terms, we arrive
at the quadratic equation: 1.4x2 − 34x + 85 = 0 which has solutions at x = 21.5 cm or x = 2.8 cm.
The second solution is bogus since we know x must be to the right of the negative charge, that is we
know x > 5.

So apparently the electric field will be zero only at x = 21.5 cm. A charged particle (of any kind)
located right there would feel no force.



(b) At what point along the x axis is the potential zero? (Let V = 0 at r = ∞.)

This is similar to what we did above, but simpler since we don’t end up with a quadratic equation.
We do end up having to be careful relating x to r though, as we’ll see.

The potential from a point charge (assuming a reference point of V = 0 at r = ∞) is V = kq/r.

Let’s look at the three regions again.

In region A, to the left of the positive charge, we have a positive voltage from the positive charge
and a negative voltage from the negative charge, so they might cancel, but in this region the positive
charge is closer and stronger, so the magnitude of it’s voltage will always be more than that from the
negative charge. They won’t be able to cancel anywhere in this region.

In region B (between the two charges), we have a positive voltage from the positive charge, and
a negative voltage from the negative charge, and we can be closer to either one of them, so we’ll
definitely find a point here where they cancel.

In region C (to the right of the negative charge) we have a positive voltage from the positive charge,
a negative voltage from the negative charge, and although the negative charge is weaker, we could
potentially be close to it so we should find a location there too.

Let’s look at region C first

Here we’re looking for some x that is larger than 5 cm where the voltages add to zero. V = kq/r but
we have to be careful. The r in that equation is the distance from the charge to the point of interest.
The symbol r is always positive (or zero), never negative.

Over here in region C, x > 5 so we can write the distance from the first charge as r1 = x and we
have to write the distance from the negative charge as r2 = x− 5. That guarantees that in this region
(where x > 5) we end up with an r value that is positive.

The sum of the voltages being zero means kq1/r1 + kq2/r2 = 0 or just q1/r1 + q2/r2 = 0 and here we
have 3.4

x
+ −2

x−5
= 0 or 3.4

x
= 2

x−5
. Cross multiplying, we have (3.4)(x − 5) = (2)(x) or 3.4x − 17 = 2x

from which x = 12.1 cm.

Analysis for Region B

Note that we are now between the two charges. We can still write r1 = x but we have to change
things a bit for r2. Remember, we need r2 to be a positive value representing how far the test point
is from the negative charge. This time, we have to write r2 = 5 − x to achieve this. In this region
then, our total voltage being zero becomes: 3.4

x
+ −2

5−x
= 0.

Cross multiplying again, we have (3.4)(5− x) = 2x or 17− 3.4x = 2x which results in x = 3.1 cm.

Ultimately then, we end up with two locations where the potential (voltage) will be zero.

Note that the locations we found in part (b) have no correlation to those we found in part (a).
Remember, the electric field is basically the gradient (derivative) of the potential. In part (b), we
were looking at the where a function (V ) is zero. In part (a), we were looking for where the derivative
of that function is zero.



Electric Potential due to a collection of point charges

Three point charges are arranged at the corners of a
square of side L as shown. What is the potential at the
fourth corner point?

The potential (i.e. voltage) at the point of interest will
be the sum of the potentials due to each of the three
charges.

For a point charge, V = kq/r and this is a scalar quantity, not a vector. Voltage doesn’t have
components.

The voltage due to the two positive charges Q is easy to compute, since each of those is located a
distance of r = L from the point of interest. Each of those will contribute a voltage of V = kq/r =
kQ/L to the sum.

The −2Q charge at the origin is located a distance of r = L
√
2 from the point of interest, so it will

contribute a voltage of V = kq/r = k(−2Q)/(L
√
2) to the sum.

The total voltage then at the fourth corner will be:

V = kQ
L

+ kQ
L

+ −2kQ

L
√
2
.

Factoring out some common terms:

V = 2kQ
L
(1− 1√

2
) or about V = 0.586kQ/L.



Electric Potential from a short line of charge

A thin rod of length L is centered on the x axis as shown in the figure. The rod carries a uniformly
distributed charge Q. Determine the potential V as a function of y for points right along the y axis.
Use the usual convention of letting V = 0 at infinity.

For a charge distribution, the voltage is the sum of the voltages due to each little charge element:
V =

∫
dV .

Here, we’ll split the line into little dx pieces, each having a charge of dq = λdx where λ = Q/L.

The voltage at the point of interest due to one of these little point charge elements will be dV = kdq/r
or dV = kλdx/r. The distance r we can write in terms of x and y though: r =

√
x2 + y2 so the integral

becomes V =
∫
dV =

∫
kλ dx√

x2+y2
where the limits of integration will be from x = −L/2 to x = +L/2.

Factoring out constants, we have V = kλ
∫ 1√

x2+y2
dx but fortunately that’s an integral that’s been

done and is in the table of integrals at the end of the book:∫ 1√
x2+y2

dx = ln(x+
√
x2 + y2)

Let’s define a = L/2 so the answer comes out a little cleaner. Evaluating this integrand at the limits
from x = −a to x = +a, gives us:

ln(a+
√
a2 + y2)− ln(−a+

√
a2 + y2) which we can combine into:

ln(

√
a2+y2+a√
a2+y2−a

)

That’s just the integral part; we need to put back the constants we pulled out, namely kλ but λ =
Q/L = Q/(2a) so we might write the final result as:

V (y) = kQ
2a
ln(

√
a2+y2+a√
a2+y2−a

)

(NOTE: what if we have an infinitely long wire with some linear charge density λ on it? What happens
to this expression as the parameter a = L/2 goes to infinity? This equation becomes undefined, so
we’ll need to take a different approach, which we’ll see in Chapter 24.)



Electric Field as the Gradient of the Potential (A)

Suppose that we measure the electric potential in a region of space and find that it appears to fit the
equation: V = by/(a2 + y2), where a and b are some constants.

(a) Determine the electric field vector E⃗ that must exist.

The electric field is the (negative) gradient of the potential:

E⃗ = −∇⃗V = −(∂V
∂x
î+ ∂V

∂y
ĵ + ∂V

∂z
k̂)

In this particular potential, we have no dependence at all on x or z so the derivatives with respect to
x and z are zero: this field thus has no î or k̂ components: Ex = 0 and Ez = 0.

Taking the derivative in the y direction, after a bit of algebra we end up with:

Ey = −∂V
∂y

= b (y2−a2)
(y2+a2)2

.

Putting these components into vector form: E⃗ = 0̂i+ b (y2−a2)
(y2+a2)2

ĵ + 0k̂

(b) Let’s compute the flux through a cube
that is 1 meter along each side, with one corner at
the origin, and the edges running along the x, y,
and z axes. Suppose that in the equations above,
b = 10 V/m and a = 0.5 m.
This is actually easier than it might look, since we
just found that the electric field is entirely in the
Y direction, and only depends on Y. Looking at
the figure, since E⃗ is entirely in the ĵ direction,
the flux Φ = E⃗ · A⃗ through the front, back, top,
and bottom sides will all be zero since the field
is perpendicular to the those area elements. We
only need to calculate the flux for the left and
right sides of the box.

On the left side of the box, y = 0 so the electric field has a constant strength of E = −b/a2 or
here E = −(10)/(0.5)2 = −40 N/C. The electric field is pointing to the left (and is constant along

that surface), and the area on that side is also pointing to the left. Φ = E⃗ · A⃗ = |E| |A| cosϕ where
remember the ϕ angle there is the angle between the directions of the two vectors. They’re in the same
direction (both pointing to the left) so ϕ = 0 leaving us with Φ = (40 N/C)(1 m2) = +40 N m2/C.

Through the right side, y = 1 so E = (10)(12−0.52)
(12+0.52)2

= 4.8 N/C, which is constant again. This field is
pointing to the right, and so is the area element, so the flux through this side will be the field times
the area (1 square meter) giving Φ = (4.8 N/C)(1 m2) cos 0 = +4.8 N m2/C.

Summing these, the total flux through the cube then is 44.8 N m2/C.

(c) Continuing the previous part, how much charge must there be inside this cube?

According to Gauss’s Law, the total flux through a closed surface equals the charge enclosed divided
by ϵo so (44.8) = Q/(8.85× 10−11) or Q = 3.96× 10−9 C or about 4 nanocoulombs.



Electric Field as the Gradient of the Potential (B)

A dust particle with mass 0.050 g and a charge of +2.0 × 10−6C is in a region of space where the
potential is given by V (x) = 2x2 − 3x3 (with V in volts, and x in meters).

(a) If the particle is released at rest at x = 0.6, what will it’s initial acceleration be?
(Magnitude and direction.)

F⃗ = ma⃗ and the force on a charge is F⃗ = qE⃗. We can determine the electric field from the gradient
of the potential, which will let us determine the force and then finally the acceleration.

E⃗ is the negative gradient of the potential. Since V has no dependence on y or z, E⃗ = −∂V
∂x
î.

The electric field vector will be pointing in the x direction. Differentiating V with respect to x:

E(x) = −dV/dx = −(4x − 9x2) = 9x2 − 4x. The dust particle starts at x = 0.6 so the electric field
at this point is E = (9)(0.6)2 − (4)(0.6) = 0.84 N/C. (Positive, so the electric field is pointing in the
+X direction at this point.)

That makes the force: F = qE = (2×10−6)(0.84) = 1.68×10−6 N (positive since the charge is positive
and E is pointing in the positive x direction).

F = ma so (1.68 × 10−6) = (0.050 × 10−3)(a) whence a = 0.034 m/s2. The positively charged dust
particle at this location will feel an acceleration of that value, in the +X direction.

Note: the particle will accelerate in the x direction, but as it moves, it’s now located in a different x
coordinate, which means the force is different (stronger in this case), so the acceleration will now be
different. We don’t have a constant acceleration here, so can’t really ‘finish’ this problem, but all they
asked for was the instantaneous acceleration when the dust particle was located at a particular spot.

The figures below show the potential V (left) and the electric field E (right) as a function of x:



Potential and Energy (A)

What potential difference is needed to give a helium nucleus ( Q = 2e = 3.2 × 10−19 C ) that was
initially at rest, a kinetic energy of 125 keV ?

We can use conservation of energy here. We need to increase theK of the particle by the given amount,
which means we will be decreasing it’s potential energy by that amount: ∆K = −∆U .

∆U = q∆V . Putting these together: ∆V = −∆K
q
.

Here we’re given the change in kinetic energy: 125, 000 eV . The helium nucleus has two protons so
has a charge of exactly 2e.

Finally: ∆V = −125,000 eV
2e

= −62, 500 volts.

Note this example (and the next) illustrate why energies are often given in units of electron volts
when we’re dealing with individual elementary particles and atoms. Except for quarks, all matter has
charges that are integer units of the basic charge e = 1.602×10−19 C so it’s usually easier to just leave
the charge directly in units of e and use energies that are in units of eV (electron volts).

Potential and Energy (B)

An electron starting from rest gains 1.33 keV of kinetic energy in moving from point A to point B.

(a) How much kinetic energy would a proton acquire starting at rest at B and moving to A? (Note it’s
moving in the opposite direction.)

∆K = −∆V
q

from the previous problem.

The kinetic energy gained only depends on the voltage change and the charge. For the proton, the
charge is of the opposite sign but we’re moving in the opposite direction, so the ∆K will be exactly
the same.

(b) Determine the ratio of their speeds at the end of their respective trajectories.

K = 1
2
mv2 and from (a) we know they will have the same kinetic energy. Thus: 1

2
mpv

2
p = 1

2
mev

2
e

Rearranging: ve
vp

=
√
mp/me = 42.8 (using the masses on the inside front cover of the book).

Note that a given voltage difference will accelerate electrons to a much higher speed (by a factor of
42.8) than it would accelerate protons (in the opposite direction). The earliest particle accelerators
focused on experiments with electrons since they could be brought to extremely high speeds more
easily.



Electric Potential and Energy (A)

Two identical ping-pong balls out in space are flying towards each other with identical initial speeds
of 10 m/s. Each has a charge of 1 µ C, uniformly distributed on their surfaces.

How close will the balls get to each other before coming (momentarily) to a stop? (Or will they collide
first?)

Assume each ball has a mass of 2.7 gram and a radius of 2 cm, and when their speeds were measured,
they were 3 m apart.

Here we’ll use conservation of energy. At the initial position, each of the balls has a kinetic energy of
K = 1

2
mv2 = (0.5)(0.0027)(10)2 = 0.135 J , giving a total kinetic energy of twice that, or 0.27 J .

They also have some initial electrical potential energy of UE = kq1q2/r so here we have UE = (9 ×
109)(1× 10−6)(1× 10−6)/(3) = 0.003 J .

The total mechanical energy then in the original configuration is 0.273 J .

The balls both have a positive charge, so there is a repulsive electrical force between them, gradually
slowing them down. In energy terms, at some point they’ll lose all their kinetic energy, coming to
a stop, at which point all the energy in the system will be in the form of just the electric potential
energy.

At that point, K = 0 and we need UE = 0.273 J so at what distance does that occur?

UE = kq1q2/r so 0.273 = (9× 109)(1× 10−6)(1× 10−6)/r.

Solving for r, we find that the ping pong balls will come to a stop when their centers at located a
distance r = 0.033 m or 3.3 cm apart.

(Now that’s the distance between the centers of the two ping pong balls, and unfortunately a regulation
ping pong ball has a diameter a bit larger than that, so it looks like they’ll end up slightly crashing
into each other here...)

This was a somewhat contrived example, of course, but it relates to atomic and nuclear collisions
where, for example, we’re trying to inject an extra proton (positive charge) into a nucleus (lots of
positive charge) in order to create a new element.

Why did we have to do this experiment out in space?

Let’s look at the electric field right at the surface of one of the balls. For this sort of spherically
symmetric object, E = kq/r2 and with a radius of r = 2 cm = 0.02 m we have: Esurface = (9 ×
109)(1 × 10−3)/(0.02)2 = 2.25 × 1010 V/m which is far higher than the 3 × 106 V/m that will cause
air to break down (ionize).



Electric Potential and Energy (B)

A charge −q1 of mass m rests on the y axis at a
distance b above the x axis. Two positive charges
of magnitude +q2 are fixed on the x axis at x = +a
and x = −a.
If the −q1 charge is given an initial velocity vo
in the positive y direction, what is the minimum
value of vo such that the charge escapes to a point
infinitely far away from the two positive charges?

This is not that bad actually. We’re giving the particle some initial velocity, so it has some initial
kinetic energy. It also has some electrical potential energy which will be negative. We have to give the
particle at least enough kinetic energy to overcome that initial UE in order for the particle to escape.
We could give it more, in which case it will still be moving when it gets infinitely far away from the
other two charges, but let’s look at the limiting case: what’s the smallest amount of kinetic energy
we need to give the particle so that it just barely escapes? I.e. it arrives at infinity with no kinetic
energy, and no potential energy. I.e. the total mechanical energy at the final position should be zero.

Well, electricity is a conservative force, so that means we need the total mechanical energy at the
initial position to be zero as well. We can compute how much (negative) electrical potential energy
exists at the initial position; then we just need to add exactly that amount of kinetic energy (i.e. give
the particle some velocity we can determine) to make the initial mechanical energy zero.

What is the potential energy U at its current (original) location? Generically U = kq1q2/r so apply
this with the particular charges and distances we have.

The charge on the left side of the X axis is located a distance of r =
√
a2 + b2 away from the charge

on the Y axis, so there is a potential energy of U = k(−q1)(q2)/
√
a2 + b2.

The charge on the right side of the X axis is located exactly the same distance away, and has the same
charge, so it is contributing exactly the same amount of potential energy.

Overall, in the initial configuration, there is present a total electrical potential energy of:
U = −2kq1q2/

√
a2 + b2.

That’s negative, so we need to add exactly that same amount of energy to the particle (in the form of
it’s kinetic energy) in order for it to ‘escape’ from the two charges glued to the X axis.

It needs to be given an initial kinetic energy of K = +2kq1q2/
√
a2 + b2.

Well, they asked for the initial velocity, but K = 1
2
mv2 so setting this equal to the expression we just

found, we can rearrange to find that:

vo =
√
( 4kq1q2
m
√
a2+b2

)


