
Chapter 24 Examples : Capacitance, Dielectrics, Electrical Energy Storage

Key concepts:

• For a given geometry, if we compute (via the methods of the previous chapter) the potential
(voltage) V between two points, we find that the voltage and charge are proportional. The
proportionality constant essentially only depends on the geometry and physical properties
of the objects involved, so can be done once up front.

This proportionality relationship is traditionally written in the form: Q = CV where C is called
the capacitance of the object.

• Capacitance for simple geometries:

(a) Two parallel plates of area A, separated by a distance d where d << A : C = ϵo
A
d

(b) Two (long) cylinders (one inside the other) of length L and with outer radius ro and inner
radius ri:

C = 2πϵoL
ln(ro/ri)

(c) Two concentric spherical shells, with outer radius ro and inner radius ri: C = 4πϵo
rori
ro−ri

• Units: note that the standard metric units of ϵo, which appears in all these equations, can be
shown to be (farad)/(meter), so in C computations, it’s convenient to use the form: ϵo =
8.854× 10−12 F/m

• Capacitors connected in parallel: Ceq = ΣCi

• Capacitors connected in series: 1
Ceq

= Σ 1
Ci

• Energy stored in a capacitor: U = 1
2
Q2

C
= 1

2
CV 2 = 1

2
QV

• Dielectric: real capacitors almost always have some material separating the conductors, which
alters the electric field between them, in turn altering the capacitance of the geometry. If Co is
the ‘pure’ calculation of the capacitance (the equations above), then the actual capacitance is
C = KCo where K is called the dielectric constant of the material being used between the
conductor elements of the capacitor.

The presence of this K alters some of the equations above:

C = KCo

E = Eo/K (electric field within the dielectric)

See table 24-1 for typical values, which run from 1 (vacuum) up to a few hundred.



Cylindrical Capacitor (A)

A cylindrical capacitor consists of a solid inner conducting core with radius 0.250 cm, surrounded by
an outer hollow conducting tube. The two conductors are separated by air, and the length of the
cylinder is 12.0 cm. The capacitance is 36.7 pF .

(a) Calculate the outer radius of the hollow tube.

The capacitance only depends on the geometry of the device. For a cylindrical capacitor, C =
(2πϵoL)/ln(ro/ri). Here we know everything in this expression except for ro, the radius of the
outer cylinder, so rearranging the equation: Cln(ro/ri) = 2πϵoL or ln(ro/ri) = 2πϵoL/C from

which: ro/ri = e2πϵoL/C and finally: ro = rie
2πϵoL/C .

Let’s compute the exponent first (converting all the quantities to standard metric units of meters,
Farads, etc):

2πϵoL/C = (2)(π)(8.854× 10−12)(0.12)/(3.67× 10−11) = 0.182

So: ro = (0.250 cm)e0.182 = 0.300 cm. (This is only slightly larger than the radius of the inner
conductor, so the gap between them is small: only 0.300− 0.250 = 0.050 cm.)

(b) If the capacitor is charged to 125 V , what will be the charge per unit length λ on the capacitor?

λ is defined to be the charge per length, so λ = Q/L. For any capacitor, C = Q/V so Q = CV
and we can substitute that into our equation for λ to get: λ = (CV )/L for a cylindrical capacitor.

Using the numbers we have here: λ = (3.67 × 10−11)(125)/(0.120) = 3.82 × 10−8 C/m or
38.2 nC/m.

(NOTE: a coaxial cable is basically a long cylindrical capacitor. We derived that for such a capacitor,
λ = CV/L which we can write as λ = (C

L
)V . This is sometimes useful since the capacitance for coax

cables is often given in terms of the capacitance per unit length (C/L) instead of C directly.)



Cylindrical Capacitor (B)

Suppose we have 10 meters of coaxial cable. The diameter of the inner wire is 1 mm and the diameter
of the outer cylinder is 6 mm.

(a) Determine the capacitance of this cable.

A coax cable is basically a wire in the middle, with a woven mesh of wire as the outer cylinder.

For this geometry, C = 2πϵo
L

ln(ro/ri)
.

Note that the capacitance depends on the radii of the inner and outer cylinders as the log of their
ratio, so we don’t need to bother converting from diameter to radius, or from millimeters to meters.

C = 2π(8.854× 10−12 F/m)(10 m)/ln(6) = 3.10× 10−10 F or 310 pF .

(b) Determine the capacitance per unit length.

This would be C/L so rearranging the expression above for C we have: C/L = 2πϵo
1

ln(ro/ri)
and we

could do that from scratch or just use the value of C we just found to determine C/L for this coax
cable: C/L = 31 pF/m.

Real world: Coax cable is usually rated in terms of various parameters per foot or per meter since
the parameters depend on the length and only you know what actual length of cable you’re going to
use. If you search for coaxial cable capacitance, common values range from 10 to 30 pF/m which is in
the ballpark of what we found here. In real coax cable there will also be some dieletric material filling
the gap between the inner and outer conductors which will produce a higher capacitance than what
we found here.

(c) If we put a 3000 volt potential across the coax conductors, how strong would the
electric field be near the inner conductor (where it will be the highest)?

When we attach a voltage across the two conductors, that will cause a charge to form (opposite charges
on each conductor) of Q = CV . The charge per length λ will be Q/L and recall that the electric field
from a line of charge is E = λ

2πϵor
.

Let’s do this symbolically since a lot of constants will end up cancelling out.

Q = CV so λ = Q
L
= CV

L
or λ = 2πϵo

V
ln(ro/ri)

The electric field at some r from an infinite line of charge is E = λ
2πϵor

and substituting in the expression

we just found for λ yields E = 2πϵo
V

ln(ro/ri)
× 1

2πϵor
or finally E = V

r ln(ro/ri)
.

For our cable, the outer to inner radius ratio was 6 and the diameter of the inner wire was 1 millimeter.
We’re looking for the electric field right near this inner wire, making r = 0.5 mm = 5× 10−4 m.

In our case then, E = 3000 volts
(0.0005 m)ln(6)

= 3, 350, 000 volts/m. Unfortunately, an electric field that strong
will ionize air and cause the charge to arc off the inner wire.

Adding a dielectric material allows the electric field to be this large (and larger) without causing
arc-ing. It’s also the reason that coax cables are also rated with the highest voltage they should be
subjected to (usually well below the point where arcing will occur...). Note that the voltages involved
in typical home usage (cable TV, etc) are only a few tens of volts.



Spherical Capacitor

A spherical capacitor contains a charge of 3.30 nC when connected to a potential difference of 220 V .
Its plates are separated by vacuum and the inner radius of the outer shell is 4.00cm.

(a) What is the capacitance?

From the definition of capacitance: C = Q/V so here, C = (3.30×10−9)/(220) = 1.50×10−11 C
or 15.0× 10−12 C which is 15.0 pF .

(b) What is the radius of the inner sphere?

As in the previous problem, the capacitance C depends only on the geometry. For a spherical
capacitor, C = 4πϵo

rori
ro−ri

. Here, we know the capacitance from part (a), and we know the inner
radius of the outer sphere: ri = 0.04 m.

Rearranging the equation for the capacitance, C/(4πϵo) =
rori
ro−ri

but we can write this as kC =
rori
ro−ri

or kC(ro − ri) = rori. Expanding: kCro − kCri = rori. Collecting the terms involving ri
together: kCro = kCri + riro = ri(kC + ro) which gives us finally: ri = kCro/(kC + ro). (Note
we can write this as: ri = ro × kC

kC+ro
, and whatever the numbers the fraction on the right will

be less than 1, so ri will be less than ro, as needed since ri is the radius of the inner sphere, and
ro is the outer sphere.)

Here, kC = (8.988 × 109)(1.5 × 10−11) = 0.1348 so ri = (0.1348)(0.04)/(0.1348 + 0.04) =
0.005392/0.1748 = 0.0308. Everything we did was in standard metric units, so this will have
units of meters, so ri = 0.0308 m or 3.08 cm. (And this did come out smaller than ro so is at
least possible.)

(c) What is the electric field just outside the surface of the inner sphere?

To find the electric field: we have a spherical conductor, with Q spread out evenly across its
surface. These spherically symmetric charge distributions act as if all the charge were located at
the center of the sphere, so the electric field can be written as E = kq/r2 where r is measured
from the center of the sphere and r is greater than or equal to the radius of the sphere. We
determined in part (b) that the radius of this inner sphere is 0.0308 m and the total charge
on this inner sphere is q = 3.30 × 10−9 C so the electric field just outside this inner sphere is:
E = kq/r2 = (8.988× 109)(3.30× 10−9)/(0.0308)2 = 31, 300 V/m.

(NOTE: if we move out a bit farther, so that we are just outside the outer sphere of this
capacitor, the electric field drops to zero since the charge on the inner and outer spheres are the
same, just of opposite sign, so from Gauss’s Law, the total ‘enclosed charge’ will be zero.)



Capacitor Network
In the figure, C1 = 6.00µF , C2 = 3.00µF , and C3 =
5.00µF . The capacitor network is connected to an ap-
plied potential Vab. After the charges on the capacitors
have reached their final values, the charge on C2 is found
to be 40.0µC.

(a) What are the charges on capacitors C1 and C3?

(b) What is the applied voltage Vab?

First, so we know what’s going on here, if we ‘unwrap’ this figure, we see that C1 and C2 are connected
in parallel, and then that combined entity is connected in series with C3.

(a) C1 and C2 are connected in parallel, so the voltage across either one has to be the same. V1 =
V2 = Q1/C1 = Q2/C2 but we apparently know how much charge was on C2 so V1 = V2 = (40.0 ×
10−6C)/(3.00× 10−6F ) = 13.33 V .

Looking at C1 now: C1 = Q1/V1 so Q1 = C1V1 = (6.00× 10−6C)(13.33 V ) = 80.0× 10−6 C or 80.0µC.

Looking at C3: this capacitor is connected IN SERIES with the combined equivalent capacitor that
C1 and C2 make, so the charge on C3 must be the same as the charge on the combination of C1 and
C2. (See section 24.2, figure 24.8.) Thus Q3 = Q1 +Q2 = (80.0µC) + (40.0µC) = 120.0 µC.

(b) Determining the applied voltage (one version):

These three capacitors make a single equivalent capacitor that has the same charge as was on the last
plate of C3 (see examples 24.5 and 24.6 on capacitor networks). C1 and C2 are connected in parallel,
which we can replace with an equivalent capacitor of C = C1+C2 = 9.00µF . This equivalent capacitor
is then in series with C3, which results in an overall capacitance of this network of 1

C
= 1

9.00 µF
+ 1

5.00 µF

from which C = 3.214µF . So now we have the overall capacitance of this network (3.214µF ), and we
know the charge on each plate of this equivalent capacitor (120.0µC) so we can find the voltage that
must have been applied to this network: C = Q/V so V = Q/C = (120.0µC)/(3.214µF ) = 37.33 V .
(Note I didn’t bother converting the two ‘micro’ symbols since they will end up canceling each other
out anyway.)

(b) Determining the applied voltage (another version):

Before the voltage is connected, everything in the circuit is neutral: there isn’t any charge anywhere.
When connected, the loose electrons move around ultimately leaving a charge of 40 µC on C1, 80 µC
on C2 and as argued in part (a), 120 µC on C3.

The voltage across points a and d in the circuit is the voltage across either C1 or C2 which we found
to be 13.33 V .

We can find the voltage across C3: Q = CV so V = Q/C = (120 µC)/(5 µF ) = 24 volts.

The voltage across both segments of the circuit then will be 13.33 V plus 24.0 V or 37.33 V .



Energy Storage

A parallel-plate vacuum capacitor has 8.38 J of energy stored in it. The separation between the plates
is 2.30 mm. If the separation is decreased to 1.15 mm, what is the energy stored:

(a) if the capacitor was disconnected from the potential source before the separation of the plates
was changed?

(b) if the capacitor remained connected to the potential source while the separation of the plates
was changed?

This is an interesting problem since at first glance it doesn’t appear that we have enough information
to solve it. The capacitance of a parallel-plate capacitor is C = ϵoA/d where A is the (unknown) area
of each plate and d the separation distance. The potential energy stored in a capacitor can be written
in various forms: U = Q2

2C
= 1

2
CV 2 = 1

2
QV , but we don’t directly have C, V , or Q: all the things that

show up in various pairs for the equations involving U .

Here we are varying the separation distance, so C = ϵoA/d is certainly changing, and the value of C
does affect the amount of energy stored, so clearly varying d will ultimately affect the amount of energy
stored U , but how? Note that as we change the value of d, the capacitance will vary according to 1/d.
Cutting d in half would cause C to double, for example. Any decrease in d causes C to increase.

(a) Here, we attached a voltage source, which caused some charge Q to build up on the plates of the
capacitor. Now we disconnect the voltage source, leaving Q still there. We now vary the separation
distance d, but that doesn’t affect the charge: Q has no place to go since the plates aren’t connected
in any way. So in this situation, we have some fixed value of Q, but d is varying. Since Q is fixed, let’s
use the first form for U : U = Q2

2C
. Since Q is constant for this case, U is proportional to 1/C. We just

argued above that C is proportional to 1/d so that means that U must be proportional to 1/(1/d) or
U is directly proportional to d. Keeping the charge constant, if we cut d in half, we also cut U in
half. Since U is directly proportional to d, then U/d is constant and we can use this ratio to solve the
problem.
Unew/dnew = constant = Uold/dold or Unew = Uold × (dnew/dold). In this problem, dold = 2.30 mm and
dnew = 1.15 mm so Unew = (8.38 J)1.15

2.30
= 4.19 J .

(b) Here, we are doing something different: we are keeping the capacitor connected to the voltage
source, so it’s V that remains constant as we vary the distance between the plates. C depends only
on the geometry of the situation, so we still have C varying as 1/d. Since V is constant, let’s use the
form: U = 1

2
CV 2. Here we see that U is directly proportional to C, which is inversely proportional to

d, thus overall U is proportional to 1/d instead of d as we had in part (a). Since U is proportional to
1/d, then Ud is constant, so Unewdnew = Uolddold or Unew = Uold × (dold/dnew). Using the numbers we
have in the problem, Unew = (8.38 J)2.30

1.15
= 16.76 J .



Capacitor Network

For the capacitor network shown in the figure , the potential difference across ab is 36 V . Determine:

(a) the total charge stored in this network,

(b) the charge on each capacitor,

(c) the total energy stored in the network,

(d) the energy stored in each capacitor,

(e) the potential difference across each capacitor.

We have two capacitors in series here. Looking from left to right in the figure, we’ll have charges
of +Q and −Q on the first capacitor’s plates, and charges of +Q and −Q on the second capacitor’s
plates. These two in series make some single equivalent capacitor with the same Q and −Q across its
plates. Since they are in series: 1

C
= 1

C1
+ 1

C2
. A little algebra lets us write this as C = C1C2

C1+C2
so here

C = (150 nF )(120 nF )/(150nF + 120nF ) = 66.67 nF .

(a) Now that we know the complete C for this network, C = Q/V so Q = CV = (66.67×10−9)(36.0) =
2.40× 10−6 Coul or 2.40µC.

(b) From the first paragraph, for these capacitors in series, we have the same Q as we just calculated
on each capacitor.

(c) The total energy stored is U = 1
2
CV 2 = (0.5)(66.67× 10−9)(36.0)2 = 43.2× 10−6 J or 43.2 µJ .

(d) To find the energy stored in each capacitor individually, we have various forms for U . At this
moment, we don’t (yet) know the voltage drop across each capacitor separately, so one option is to
use U = Q2/(2C) since we DO know the charge and capacitance of each capacitor.

For the first capacitor: U = (2.40× 10−6)2/(2× 150× 10−9) = 1.92× 10−5 J or 19.2 µJ .

For the second capacitor: U = (2.40× 10−6)2/(2× 120× 10−9) = 2.40× 10−5 J or 24.0 µJ .

(Adding these together, we get 43.2 µJ , which is the same energy we calculated was stored in the
entire network, in part (c).)

(e) To find the potential drop (i.e. the voltage) across each capacitor individually, C = Q/V so
V = Q/C and we do know the charge and capacitance of each capacitor. The voltage drop across the
first capacitor will be: V = (2.40 × 10−6C)/(150.0 × 10−9F ) = 16.0 V . The voltage drop across the
second capacitor will be: V = (2.40× 10−6C)/(120.0× 10−9F ) = 20.0 V . (And as a check, the voltage
drop across the two capacitors combined would be 16 + 20 = 36 V which is just what we were told it
was.)



Capacitor in a computer keyboard

In one type of computer keyboard, each key holds a small metal plate that serves as one plate of a
parallel-plate, air-filled capacitor. When the key is depressed, the plate separation decreases and the
capacitance increases. Electronic circuitry detects this change in capacitance and thus detects that
the key has been pressed. In one particular keyboard, the area of each metal plate is 42.0 mm2, and
the separation between the plates is 0.700 mm before the key is depressed.

(a) Calculate the capacitance before the key is depressed.

Here we have a parallel plate capacitor, so C = ϵoA/d. We were given both of these measurements
but in units of square millimeters and we need meters, so A = 42.0 mm2 × 1 m

1000 mm
× 1 m

1000 mm
=

42.0 × 10−6 m2. The separation distance d = 0.7 mm = 0.7 × 10−3 m. So finally, C =
(8.854×10−12)(42.0×10−6)/(0.7×10−3) = 5.312×10−13 F . We can write this as 0.5312×10−12 F

which is 0.5312 pF .

(b) If the circuitry can detect a change in capacitance of 0.250 pF , how farmust the key be depressed
before the circuitry detects its depression?

When we press down on the key, we push the plates closer together, which will cause the capac-
itance to go up (since C is proportional to 1/d). We’re told in this part that the capacitance
has to go up by 0.250 pF over its initial value in order for the circuit to be able to detect
the change, so we want our new capacitance to be (0.5312 pF ) + (0.250 pF ) or 0.7812 pF .
What separation distance will result in this new C value? C = ϵoA/d so d = ϵoA/C or
d = (8.854 × 10−12)(42.0 × 10−6)/(0.7812 × 10−12) = 4.76 × 10−4 m or d = 0.476 mm. So
here we had to reduce the separation distance from the original 0.700 mm so the new value of
0.476 mm, which is a CHANGE of 0.224 mm.



Capacitors and Energy Storage

We have a 2-plate capacitor constructed of metal squares that are 4 cm on a side, separated by 1 mm.

(a) What is the capacitance of this device?

C = ϵoA/d = (8.854× 10−12) (0.04)
2

0.001
= 1.42× 10−11 F .

(b) If we attach a 24 V battery across this capacitor, how much charge will it hold?

Q = CV = (1.42× 10−11)(24) = 3.4× 10−10 J

(c) How much energy is stored in this capacitor?

We have several options here, U = 1
2
Q2

C
= 1

2
CV 2 = 1

2
QV , and we know all of the variables so

could use any of them. They all yield U = 4.1× 10−9 J .

(d) Suppose we keep the battery connected and separate the plates so they are 2 mm apart now
(instead of the original 1 mm separation, so we’re pulling the plates apart here). How much does
the energy stored in the capacitor change? Did we have to do work to separate the plates, or do
we extract energy from the capacitor by separating the plates?

We can work this from scratch or take a shortcut. Since C = ϵoA/d, by doubling the separation
distance d, we’ve cut the capacitance in half. The new C is half the previous one. Q = CV so if
we keep the same voltage but cut C in half, we’ve also cut Q in half.

The battery is still connected, so the voltage V is the same. Let’s use U = 1
2
CV 2 then. Since

the capacitance was cut in half (and V remained constant), then U was also cut in half. The
energy stored in the capacitor has been reduced, so we have the possibility of extracting some
energy here.

This is an interesting and counter-intuitive situation. Apparently the energy stored (the electrical
potential energy) decreases as the separation distance increases. That implies the force
between the plates is repulsive instead of attractive, even though the plates have opposite
signs and should be attracting each other.

(e) Suppose instead that we detach the battery from the original capacitor, leaving the charge there.
Now we move the plates from being 1 mm apart, to 2 mm apart. How much does the energy
stored change now? What else changes?

In this case, the charge doesn’t change (it doesn’t have any place to go). We’re still cutting C in

half by doubling the distance between the plates. Since Q is constant, let’s use U = 1
2
Q2

C
. Here

we see that cutting C in half will cause U to double. Increasing the separation distance d causes
the potential energy stored to go up. Force is the negative gradient of the potential, so in this
case apparently the plates are attracting each other (as expected, since we have two oppositely
charged things). We have to do work (apply an external force) to pull these plates farther apart.



Forces in capacitors

The previous example illustrated how the potential energy stored in a (parallel plate) capacitor changes
as the separation distance between the plates changes.

In the lecture, we showed that if the charge is held constant (i.e. an isolated capacitor no longer

connected to a battery), the (attractive) force between the two plates will be F = Q2

2ϵoA
. Using

C = ϵoA/d and Q = CV we can morph this into some other useful forms, including F = 1
d
(1
2
CV 2).

The part in parenthesis interestingly enough is the energy stored in the capacitor.

Suppose we have a 1 µF capacitor charged to V = 1000 volts, and the separation distance between
the plates is 1 mm. How much force is there between the plates of this capacitor?

F = 1
d
(1
2
CV 2) = 1

0.001
(1
2
(1× 10−6)(1000)2)) = 500 N .

That’s a considerable amount of force considering how small the capacitor is, so in ‘real’ capacitors,
some (insulating) material must be be inserted between the plates to keep them apart. Adding that
material alters the capacitance though, and we’ll discuss this more in the next example.



Dielectrics

Adding a material between the plates of a capacitor has the effect of altering the value of C. We
compute C values by just doing an integral involving the geometry of the situation, during which we
assumed a vacuum between the plates. If we call that result Co, then the capacitance when the material
is inserted can be written as C = KCo where K is called the dielectric constant of the material. See
table 24-1 in the book for some representative values.

Suppose we use the same capacitor from earlier, where C = 1µF with a separation distance of 1 mm,
charged to 1000 volts. How much energy does this capacitor contain? U = 1

2
CV 2 = (0.5)(1 ×

10−6)(1000)2 = 0.5 J .

This capacitor will hold a charge of Q = CV = (1× 10−6)(1000) = 1× 10−3 coulombs.

• Suppose we leave this capacitor attached to the voltage source and slip some material between
them that has a dielectric constant of K = 2. What happens to C, Q, V, and U?

C = KCo so the new capacitance will be C = (2)(1× 10−6 F ) = 2× 10−6 F .

Q = CV and we’re holding the voltage constant, so doubling the capacitance will double the
amount of charge. Q will be 2× 10−3 coul now.

V remains the same (still attached to the 1000 volt source).

We have various expressions for U , but since V is constant here, let’s use U = 1
2
CV 2. We’ve

doubled the value of C so this capacitor is now storing twice as much energy. Adding the material
has caused the potential energy to go up, so we had to do work to push this material between
the two plates.

Put another way, the capacitor is trying to expel the material. (That actually happens in lesser-
quality capacitors, where you’ll occasionally see the case bulge or split open with some of the
dielectric material leaking out.)

• What if we take the capacitor and detach it from the battery, leaving the original Q present.
What are the new values of C, Q, V, and U now?

C just depends on the capacitor itself; inserting the K = 2 material has doubled the value of C.

Q = CV so V = Q/C. The charge remains the same, so doubling the value of C means the
voltage across the plates has been cut in half.

Since Q is constant, let’s use U = 1
2
Q2

C
to examine the potential energy. We’ve doubled C, so

we’ve cut U in half here. Adding the material reduces the potential energy of the capacitor. We
did negative work putting this material in place (or put another way, we would have to hold the
material back from being pulled into the capacitor).



Force on Dielectrics

Let’s consider a little parallel-plate capacitor functioning in a circuit, so that we have some voltage V
across the plates. What force (if any) will the dielectric material between the plates ‘feel’?

One of our forms for the potential energy stored in a capacitor was U = 1
2
CV 2 but introducing a

dielectric material between the plates causes the capacitance to increase. If Co is the ideal capacitance
(i.e. when there is NO dielectric material present) then the actual capacitance will be C = KCo.

The potential energy in the presence of the dielectric then will be U = 1
2
(KCo)V

2 or U = K×(1
2
CoV

2).

Adding the dielectric means that when the externally applied voltage is the same, the energy stored
in the capacitor is higher.

Looked at the other way around, removing the dielectric decreases the potential energy stored. Forces
act in a way to decrease U ( F being the negative gradient of the potential energy ). In this type of
capacitor then, any time there is a voltage present across the capacitor (which is pretty much all the
time in a working circuit) it’s constantly trying to push the dielectric material out.

This is a common problem with real-world capacitors, especially cheaply-made ones. Some years ago,
several computer manufacturers had to deal with motherboards with leaking or exploding capacitors.


