
Chapter 25 Examples : Electric Currents and Resistance

Key concepts:

• Current : I : rate at which charge is flowing past a point : I = dQ/dt. (Units of coulombs/sec,
also called an ampere or just amp, abbreviated using the symbol A.) (For historical reasons, we
pretend that this is positive charge flowing in one direction, when in reality it’s negative charges
flowing in the opposite direction.)

• Ohm’s Law : current related to voltage: V = IR, defining the resistance (R) of a circuit or
entity. R has units of volts/amp, also called the ohm abbreviated using the symbol Ω.

• Resistivity (typically used in wire-like scenarios) : the resistance of a wire is proportional to
the wire’s length (L) and inversely proportional to its cross-sectional area (A), so: R = ρL

A
. ρ is

called the resistivity of the material the wire is made of. See table 25-1 for the resistivity of some
common materials. Insulators typically have very large resistivities. Glass has a resistivity on
the order of 109 to 1012 Ω ·m, for example.

The resistivity of a material usually changes slightly with temperature. To a first order approx-
imation, this is usually represented as:
ρ = ρo[1+α(T−To)]. The reference temperature is usually taken to be the ‘standard temperature
and pressure’ value of To = 20oC. (Table 25-1 includes both ρo and α for some materials.)

• Power : P = IV and since V = IR this can also be written in various other convenient forms:
P = I2R and P = V 2/R

• Alternating current

Electrical power is usually delivered to users as alternating current instead of direct current. The
voltage source varies with time as V = Vo sin (2πft) where f is the frequency of the source (in
Hertz). Also written as V = Vo sin (ωt). In the US and Canada, f = 60 Hz is typical; in other
parts of the world, 50 Hz is more common.

Since V = IR then I = V/R = Vo

R
sin (ωt)

Since P = I2R the power fluctuates as P = I2oR sin2(ωt). The average power would be Pavg =
1
2
I2oR or equivalently Pavg = 1

2
V 2
o /R, which can also be written as Pavg = IrmsVrms = I2rmsR =

V 2
rms/R since these forms ‘look’ like the DC versions. The rms value is the square root of the

average of the square of a quantity so Irms =
1√
2
Io = 0.707Io and Vrms =

1√
2
Vo = 0.707Vo. These

rms values are sometimes called the effective values of the current and voltage.

In the US, the ‘120 volts’ is actually the rms value of the voltage. The true signal coming out of
the wires has a magnitude of Vo =

√
2Vrms = 170 volts.

• Current Density and Drift Velocity

Current density: j⃗ : current per unit area. In a wire, this is the current divided by the cross
sectional area of the wire: I = jA. If the density is not uniform, I =

∫
j⃗ · dA⃗.

Drift velocity (actual speed of the electrons making up the current): I = −neAvd or j = −nevd.
(Typical vd in household currents is fractions of a millimeter per second...) n is the density of
free charges (electrons really) in the material.



Current and drift speed

A 5.00 A current runs through a 12-gauge copper wire (diameter 2.05 mm) and through a light bulb.
Copper has 8.5× 1028 free electrons per cubic meter. (a) How many electrons pass through the light
bulb each second? (b) What is the current density in the wire? (c) At what speed does a typical
electron pass by any given point in the wire? (d) If you were to use wire of twice the diameter, which
of the above answers would change? Would they increase or decrease?

This is a pretty direct application of the definitions of the requested quantities.

(a) The current I is defined as the amount of charge flowing per time, so here we have 5.00 A which
is 5.00 C/s. In one second, then, 5.00 C of charge flows past any point in the circuit. This charge
is made of individual electrons, each carrying a charge of 1.602 × 10−19 C, so 5.00 C represents
(5.00 C)/(1.602× 10−19 C/electron) = 3.12× 1019 electrons.

(b) The current density is defined as j = I/A where A is the cross-sectional area of the wire. The
diameter of the wire is 2.05 mm or 2.05 × 10−3 m and the cross-sectional area is A = πr2 or A =
π(d/2)2 = π

4
d2 so A = (π)(2.05× 10−3)2/4 = 3.301× 10−6 m2. The current density then is: j = I/A =

(5.00 A)/(3.301× 10−6 m2) = 1.51× 106 A/m2.

(c) The drift speed vd is related to the current density through: j = nevd, so vd = J/(ne). Ignoring

signs, vd = 1.51×106 A/m2

(8.5×1028m−3)(1.602×10−19 C)
= 1.11 × 10−4 A m/C but amps is coulombs per second, so this

is 1.11× 10−4 m/s or 0.111 mm/s.

(d) If we increase the diameter of the wire, the cross-sectional area will increase. They didn’t say
anything about the current changing, so if we still have the same 5.00 A of current, the number of
electrons flowing in 1 second won’t change. The current density j = I/A so as A increases, j will
decrease. The drift speed vd = j/(ne) so it will also decrease, since j decreased.

Resistance of a wire

In household wiring, copper wire 2.05 mm in diameter is often used. Find the resistance of a 24.0 m
length of this wire.

The resistance is defined in terms of the resistivity of the material and its geometry as R = ρL/A
where L is the length of the wire and A its cross-sectional area. From table 25.1, the resistivity of
copper (at room temperature) is ρ = 1.72 × 10−8 Ω m. The length of the wire is L = 24.0 m and
the cross-sectional area will be A = π

4
d2 where d is the diameter d = 2.05 × 10−3 m from which

A = 3.301× 10−6 m2.

So finally: R = ρL/A = (1.72× 10−8 Ω m)× (24.0 m)/(3.301× 10−6 m2) or R = 0.125 Ω.

Note: wire is sometimes labelled with it’s resistance per meter (or per foot) so you can just multiply
the length of wire you’re using by that R/L factor to get the actual resistance in Ohms of your
particular section of wire. The wire here was 24 m long, so the resistance per length would be
R/L = (0.125 Ω)/(24.0 m) = 5.21× 10−3 Ω/m.



Ohm’s Law and power lines

A copper transmission cable 100 km long and 10.0 cm in diameter carries a current of 125 A. (a)
What is the potential drop across the cable? (b) How much electrical energy is dissipated as thermal
energy every hour?

(a) The voltage, current, and resistance are related by V = IR. We have the current flowing I = 125 A
but don’t directly have the resistance of the wire, but we can find it from R = ρL/A since we know
that the wire is made of copper ( ρ = 1.72×10−8 Ω m ) and is L = 100×103 m long and has a diameter
of 0.1 m which implies a cross-sectional area of A = π

4
d2 = 7.854 × 10−3 m2. The resistance of this

long section of wire then is: R = ρL/A = (1.72× 10−8 Ω m)× (105 m)/(7.854× 10−3 m2) = 0.219 Ω.

NOTE: this is comparable to the resistance of the much shorter and thinner wire in the previous
problem. Since R = ρL/A, the much larger area A of this transmission wire (which reduces R)
mostly makes up for the much longer wire length (which would increase R).

The voltage drop across this 100 km long wire then is V = IR = (125 A)(0.219Ω) = 27.4 V . (This
may sound like a lot, but these transmission wires typically carry voltages of tens or even hundreds of
thousands of volts.)

(b) The power emitted (as heat mostly) from the wire will be P = V I = (27.4 V )(125.0 A) = 3425 W
which is 3425 J/s (joules/second). In one hour (3600 s), the amount of heat generated by this wire
will be (3425 J/s)(3600 s) = 1.23× 107 J . (Spread over 100 km of wire, though. Each meter of wire
is only emitting 0.03425 W of heat, so probably wouldn’t even feel warm.)

Another wire; different information given

An electrical conductor designed to carry large currents has a circular cross section 2.50mm in diameter
and is 14.0 m long. The resistance between its ends is 0.104Ω. (a) What is the resistivity of the
material? (b) If the electric field magnitude in the conductor is 1.28 V/m, what is the total current?
(c) If the material has 8.5× 1028 free electrons per cubic meter, find the average drift speed under the
conditions in part (b).

(a) The resistance of a wire depends on the resistivity of the material and the geometry of the wire:
R = ρL/A. Here we know R and the geometry of the wire, but wish to find the resistivity, so
ρ = RA/L. The cross-sectional area of the wire is A = π

4
d2 where d = 2.50 × 10−3 m from which

A = 4.909 × 10−6 m2, so ρ = RA/L = (0.104 Ω)(4.909 × 10−6 m2)/(14.0 m) = 3.65 × 10−8 Ω m.
(Looking at table 25.1, whatever this material is, it’s comparable to the other ‘good’ conductors.)

(b) The electric field down the length of the wire is E = V/L so V = EL = (1.28 V/m)(14.0 m) =
17.92 V . We thus have a 17.92 volt drop across the length of this wire. The current flowing is related to
this voltage drop and the resistance of the wire: V = IR so I = V/R = (17.92 V )/(0.104 Ω) = 172.3 A.

Alternately: I = JA and J is related to the electric field: E = ρJ so J = E/ρ = (1.28 V/m)/(3.65×
10−8 Ω m) = 3.51× 107A/m2. Then: I = JA = (3.51× 107 A/m2)× (4.909× 10−6m2) = 172.3 A.

(Either way, this 14.0 m wire is emitting P = V I = 3090 W , which is about the same as the 100 km
wire in the previous problem, so this short wire would likely be very hot.)



Power

A typical cost for electric power is 12 cents per kilowatt-hour. (a) Some people leave their porch lights
on all the time. What is the yearly cost to keep a 75 W bulb burning day and night? (b) Suppose
your refridgerator uses 400 W of power when it’s running, and it only runs 8 hours each day. What is
the yearly cost of operating the refridgerator?

This is entirely a units-conversion problem.

(a) Porch light: here we have a 75 W bulb burning continuously for a year. The total energy (joules)
used in this time will be 75 J/s times the number of seconds in a year. Accounting for leap years, the
length of a year is approximately 365 and 1/4 days so 1 year = (365.25 days)(24 hrs/day)(3600 s/hr) =
3.16× 107 s. (Note this is very close to π times 107 seconds, which is a convenient short-cut for quick
estimates with less than a 1 percent error.)

In one year, then, the porch light will use (75.0 J/s)(3.16× 107 s) = 2.37× 109 J of energy.

The obscure part here is the units at which power usage is billed: the kilowatt-hour. Watts is a unit
of power, which is energy per time, and hours is time, so the ‘kW-hr’ unit is actually a unit of energy.
1 kW · hr = (1000 W )(1 hr) = (1000 J/s)(3600 s) = 3, 600, 000 J = 3.6× 106 J . The rate, then, can
be written as ($0.12)/(3.60× 106 J).

Finally, the cost for the porch light will be: (2.37× 109 J)× $0.12
3.60×106 J

= $79.00.

(b) The refridgerator only runs for 1/3 of this time, but uses energy at (400)/(75) = 5.333 times the
rate, so in a year will use (5.333)/3 = 1.78 times as much energy, or (1.78)($79.0) = $140.60.


