
Chapter 27 Examples : Magnetism

Key concepts:

• Cross product: A⃗ × B⃗ produces a vector that is perpendicular to the plane formed by A and
B, in a direction that can be determined via the right-hand rule (starting from A and curling
towards the direction of B, your thumb is pointing in the direction of the cross product). The
resulting vector has a magnitude of AB sinϕ where A and B are the magnitudes of the two input
vectors and ϕ is the angle between them (the interior angle). (See Table 27-1 for examples.)

• Force on a charged particle in a uniform magnetic field: F⃗ = qv⃗ × B⃗

• Force on a current-carrying wire in a uniform magnetic field: F⃗ = Il⃗ × B⃗

• If a particle enters a uniform magnetic field that is perpendicular to its direction of motion, the
magnetic force will cause it to move in a circular path of radius r = mv

qB
. This circular motion has

a period of T = 2πm/(qB) or equivalently represents a frequency (called the cyclotron frequency)
of f = qB/(2πm)

• In the presence of both electrical and magnetic forces, the forces simply add as vectors (along

with any other vector forces present). F⃗ = q(E⃗ + v⃗ × B⃗)

• Units: 1 Tesla = 1N/(A · m) (i.e. newtons per amp-meter). You may also see it denoted as
webers per square meter).

A full tesla field is very strong so a smaller unit of often used. One gauss is a ten-thousandth
of a tesla: 1 G = 1× 10−4 T .

The earth’s magnetic field at its surface is around 0.5 G. (Note: the point on the Earth called
the ‘north pole’ is actually a south magnetic pole, and vice versa.)



Using Magnetism to counter gravity

A particle of mass 0.195 g carries a charge of −2.50×10−8 C. The particle is given an initial horizontal
velocity that is due north and has magnitude 4.00× 104 m/s. What are the magnitude and direction
of the minimum magnetic field that will keep the particle moving in the earth’s gravitational field in
the same horizontal northward direction?

Do we need to include the Earth’s magnetic field here? Note that the particle is travelling due north,
parallel with the earth’s magnetic field. F⃗ = qv⃗ × B⃗, which means that v⃗ and B⃗ are in the same
direction, making the angle between them zero. F⃗ = qvB sinϕ so the field of the earth has NO
EFFECT on the motion of this particle, and we can ignore it and move on. (Actually the Earth’s
magnetic field is slightly tilted from the north-south longitude lines, so may be having an effect here,
but let’s ignore it for now - we’ll find that the magnetic field we need in this problem to keep the
particle floating will be hugely larger than the Earth’s weak magnetic field.)

The force of gravity is downward and the particle is moving to the north and has a negative charge,
so we have to do our right-hand rules carefully. If the magnetic field we are looking for is pointed to
the East, then v⃗× B⃗ will point down (right-hand rule) so the FORCE, being F⃗ = qv⃗× B⃗ will point UP
(the negative charge on the particle caused that additional sign flip): exactly the direction we need to
have a chance of cancelling out gravity.

Try magnetic fields in various other directions and determine the direction the force will be. A magnetic
field in the N or S directions would result in zero force on the particle, since it’s velocity would be
parallel to the magnetic field, which makes v⃗ × B⃗ equal to zero. A magnetic field UP would result in
v⃗ × B⃗ to the east, so F⃗ = qv⃗ × B⃗ would be to the west (since q is negative here). And so on...

If the magnetic field is ‘sort-of’ eastward, the angle between v⃗ and B⃗ will be something other than 90
degrees, making sinϕ something less than 1. That means we’ll need a stronger field to cancel gravity.
We’re looking for the smallest possible magnetic field that can cancel out gravity in this case, so B⃗
must be pointing exactly towards the east.

The magnitude of the force the magnetic field is exerting will be F = qvB and we need that to
equal the magnitude of the gravitational force (we’ve already taken care of the direction), so we need:

qvB = mg or B = mg
qv

.

Substituting in the values we have here (and converting the mass from grams to kilograms): B =
(0.195×10−3)(9.81)
(2.50×10−8)(4×104)

= 1.91 T , which is an extremely strong magnetic field. The Earth’s magnetic field

has a strength of about 0.5 gauss or 0.5× 10−4 tesla which is nearly 40,000 times weaker than what
we found we needed here.



Charged Particle Moving in a Magnetic Field

A beam of protons traveling at 1.20 km/s enters a uni-
form magnetic field, and their motion is perpendicular to
the field. The beam exits the field, leaving the field in a
direction perpendicular to its original direction. (That is,
the protons make a 90 degree turn as they pass through
the magnetic field.) The beam travels a distance of
1.18 cm while in the field. What is the magnitude of
the magnetic field?

Lots of verbiage there, but basically we have a charged particle moving in a uniform magnetic field,
with the velocity perpendicular to the field. This is the situation which produces circular motion, and
here the proton manages to trace out just a quarter-circle before it runs out of field and continues on
as shown.

Up front, we’ll convert the speed from 1.20 km/s to 1200 m/s, and the arclength s = 1.18 cm to
s = 1.18× 10−2 m.

For a charged particle moving in such a field, we found (section 27-4) that the radius of the circle
was related to the charge, speed and the strength of the magnetic field by: R = mv

qB
. We’re looking

for the field B so we can rearrange this into the form: B = mv
qR

. We can find the mass and charge
of the proton from the tables at the very end of the book, and we know the velocity. What is
the radius of this arc though? The path the proton makes in the field is exactly one quarter of a
complete circle, so it represents a distance (along the arc) of one quarter of the circumference of a
circle of radius R: s = 1

4
(2πR) or s = 1

2
πR. We are given that s = 1.18 cm = 1.18 × 10−2 m so

R = 2s/π = (2)(1.18× 10−2 m)/π = 7.512× 10−3 m.

Finally we can put it all together: B = mv
qR

= (1.67×10−27)(1200)
1.6×10−19)(7.51×10−3)

= 1.67× 10−3 T .

We can write this as 16.7 × 10−4 T which is 16.7 Gauss. The earth’s magnetic field is around 0.5 G
so this field is about 33 times larger (making it a pretty weak field as magnets go...).



Magnetic Force on a current-carrying wire

A straight, vertical wire carries a current of 1.20 A downward in a region between the poles of a
large superconducting electromagnet, where the magnetic field has a magnitude B = 0.588 T and is
horizontal. What are the magnitude and direction of the magnetic force on a 1.00 cm section of the
wire that is in this uniform magnetic field, if the magnetic field direction is: (a) east, (b) south, (c)
30.0o south of west?

This is mostly to practice using the right-hand-rule.

We found in section 27-3 that the force on a current-carrying wire is F⃗ = Il⃗ × B⃗. The ‘direction’ of
the length l⃗ is defined to be the direction the current is flowing in.

(a) Case of B⃗ to the east: here l⃗ points down and B⃗ points east, so

(using the right-hand rule), l⃗ × B⃗ points directly south. The angle

between l⃗ and B⃗ is 90o in this case, so the magnitude of the force is
F = IlB sin 90 = (1.20)(0.01)(0.588)(1.000) = 7.06× 10−3 N .

(b) Case of B⃗ to the south: here l⃗ points down and B⃗ points south,

so (using the right-hand rule), l⃗ × B⃗ points directly west. The angle

between l⃗ and B⃗ is 90o in this case, so the magnitude of the force is
F = IlB sin 90 = (1.20)(0.01)(0.588)(1.000) = 7.06 × 10−3 N . (Same
as before.)

(c) Case of B⃗ being 30 degrees south of west: From the sketch, the

right hand rule tells us that l⃗ × B⃗ will point 30o west of north
(or equivalently 60o north of west). The angle between l⃗ and B⃗ is
still 90o, so the magnitude of the force is still F = IlB sin 90 =
(1.20)(0.01)(0.588)(1.000) = 7.06× 10−3 N .



Magnetic Balance

The circuit shown in the figure is used to make a magnetic
balance to weight objects. The mass m to be measured
is hung from the center of the bar that is in a uniform
magnetic field of 1.50 T , directed into the plane of the
figure. The battery voltage can be adjusted to vary the
current in the circuit. The horizontal bar is 60.0 cm
long and is made of extremely light-weight material (i.e.
ignore it’s mass). It is connected to the battery by thin
vertical wires that can support no appreciable tension:
all the weight of the suspected mass m is supported by
the magnetic force on the bar. A resistor with R = 5.00 Ω
is in series with the bar. The resistance of the rest of the
circuit is negligible. (a) Which point a or b, should be
the positive terminal of the battery? (b) If the maximum
terminal voltage of the battery is 175 V , what is the
largest mass that this instrument can measure?

The magnetic field will exert a force on the bar due to the current flowing through it of F = Il⃗ × B⃗.
From the figure, the magnetic field B⃗ is pointing into the paper. Let’s assume the current is flowing
from the left to the right through the bar. That means that l⃗ is pointing to the right, which means
that l⃗ × B⃗ will be, according to the right-hand rule, pointing UP: exactly the directly we need the
magnetic force to be in, in order to have a chance of counteracting gravity. (If we assume the current

is flowing from the right to the left, then l⃗ is to the left, and l⃗ × B⃗ will be pointing downward, in the
same direction of gravity, so no chance of having those two balance each other out.)

OK: we know the current has to be flowing from the left to the right through the bar. That means
that point a must be the positive terminal of the battery (answer to part (a)).

The current is exactly perpendicular to the magnetic field, so F = Il⃗ × B⃗ gives us a magnitude of
F = IlB sinϕ = IlB sin 90 = IlB. We need this to equal the magnitude of the gravitational force, so
IlB = mg or m = IlB/g.

The current flowing depends on the voltage of the battery and the resistance of the circuit. Here
we only have the one resistor, so V = IR or I = V/R. The mass is related to the voltage then by:
m = IlB/g = V lB

Rg
. Here we see that the mass is directly proportional to the voltage. So if we can

vary the voltage, we can adjust it to exactly mass the force of gravity.

For our particular device, R = 5 Ω, l = 0.60 m, B = 1.50 T and g = 9.81 m/s2. The power
supply can only put out a maximum of V = 175 volts, so the largest mass we can measure will be
m = (175)(0.60)(1.5)

(5)(9.81)
= 3.21 kg.



Balancing Electrical, Magnetic, and Gravitational Forces

You wish to hit a target from several meters away with a charged coin having a mass of 5.0 g and
a charge of +2500 µC. The coin is given an initial velocity of 12.8 m/s, and a downward uniform
electric field with field strength 27.5 N/C exists throughout the region. If you aim directly at the
target and fire the coin horizontally, what magnitude and direction of uniform magnetic field are
needed in the region for the coin to hit the target?

Converting to standard metric units: m = 5.0 g = 5.0× 10−3 kg and Q = 2500µC = 2.5× 10−3 C.

There are three forces acting on the coin: the coin has mass, so we have gravity. The coin has a
charge and there is an electric field present, so we have an electrical force, and the coin is charged
and moving through a magnetic field, so we also have a magnetic force. The verbiage of the problem
basically says that we want the coin to travel in an exactly straight line, which means that these three
forces need to cancel each other out.

The gravitational force is pointing down, obviously.

The electric force will be F⃗E = qE⃗. Here E⃗ is pointing down and the charge is positive, so the electric
force will be downward also.

We need the magnetic force to be exactly upward in order to cancel out these other two. The magnetic
force will be F⃗B = qv⃗ × B⃗. The coin has a positive charge, so we can find the direction of the force
by just looking at v⃗ × B⃗ for various possible magnetic field directions until we find one that produces
an upward force. Let’s position ourselves at the initial location of the coin, with the coin flying away
from us.

• If the magnetic field is pointing in the same direction as v⃗ (or in the exact opposite direction),

then v⃗ × B⃗ will be zero, and that won’t help.

• If the magnetic field is pointing UP, then v⃗ × B⃗ will be to our right, so that doesn’t work.

• If the magnetic field is pointing DOWN, then v⃗ × B⃗ will be to our left, so that doesn’t work.

• If the magnetic field is pointing RIGHT, then v⃗ × B⃗ will be downward, so that doesn’t work.

• If the magnetic field is pointing LEFT, then v⃗ × B⃗ will be up, and we found it.

If the magnetic field is pointing ‘mostly’ LEFT but maybe a bit ahead or behind, the force will still
be UP, but sinϕ will be something less than 1 and we’ll need a stronger field to achieve our desired
result. With the field pointing exactly to the left, we can get away with the smallest possible field.

With the magnetic field exactly to the left, the angle between the velocity and the field is 90o so the
magnitude of the force will just be FB = qvB, and it will be directly upward. The electric force of qE
and the gravitational force of mg are both directly downward. The sum of the forces then, taking UP
to be the positive direction, will be ΣF = −mg − qE + qbB and we want this sum to be zero so that
the coin flies in an exactly straight line, so finally: −mg − qE + qvB = 0. Since we’re interested in
the strength of the magnetic field, we’ll rearrange this to solve for B: B = (mg + qE)/(qv).

With the values given here: B = (5×10−3)(9.81)+(2.5×10−3)(27.5)
(2.5×10−3)(12.8)

= 0.04905+0.06875
0.032

or B = 3.68 T (a very

large magnetic field).



Railgun - version 1 (pretty ineffective version)

A 3.00 N metal bar, 1.50 m long and having a resistance
of 10.0 Ω rests horizontally on conducting wires connect-
ing it to the circuit shown in the figure. The bar is in a
uniform 1.60 T magnetic field and is not attached to the
wires in the circuit. What is the acceleration of the bar
just after the switch S is closed?

When we close the switch, some current will flow through the bar and this current being in a magnetic
field will cause a force from F⃗B = Il⃗ × B⃗. What direction will the current be flowing in?

When we close the switch, what does the circuit look like? We have current flowing from the positive
battery terminal through the 25 Ω resistor, and then we encounter basically two resistors in parallel:
the 10 Ω resistor already shown in the figure, plus the 10 Ω resistance of the movable bar. These two
parallel resistors combine to produce an equivalent resistance of 1

R
= 1

10
+ 1

10
= 2

10
so together they

make a resistance of 5.0 Ω. Now this resistance is in series with the 25.0 Ω resistor, giving a total
resistance in the circuit of 25+5 or 30.0 Ω. The total current flowing from the battery then is V = IR
or I = V/R = 120/30 = 4.0 A. When this current gets to the parallel-resistor-part of the circuit, there
we have two identical 10 Ω resistors, so ultimately exactly 2.0 A of current will flow through the bar.

This current is flowing from the positive terminal of the battery towards the little network of resistors.
From our previous work, we know that the current will be flowing ‘down’ (from the top of the figure

towards the bottom) through the moving bar. This will cause a force from F⃗B = Il⃗ × B⃗ in the
UPWARD direction. The magnitude of this force will be FB = IlB = (2.0)(1.5)(1.6) = 4.8 N . We
were given that the bar has a weight of 3.00 N though, so the two forces acting will be 4.8 N upward
due to the external magnetic field, and 3.0 N downward due to gravity, giving us a net force of 1.8 N
upward.

That’s fine, but ultimately they asked for the actual acceleration on the bar, so we need to find the
mass of the bar. It’s weight is W = mg so m = W/g = (3.00 N)/(9.81 m/s2) = 0.3058 kg. F = ma
so the acceleration felt by the bar will be a = F/m = (1.8 N)/(0.3058 kg) = 5.88 m/s2 (upward).

Note that when we close the switch, the bar will fly upward with the acceleration we just computed.
That means it’s flying up away from the wires it was resting on, and as soon as it detaches, the current
will stop flowing, at which point there won’t be any magnetic force on the bar anymore, and it will
just fall back down. When it touches the wires, the current will flow again, causing it to be shot into
the air again, and so on. So the bar will likely just bounce up and down on the wires. Not particularly
useful...



Railgun - version 2 (more effective version)

Suppose we do the same problem but this time let the
magnetic field direction is reoriented so that the field is
pointing down into the ‘page’ here. (So take those B⃗
arrows and change them so they’re pointing down into
the figure.)
A 3.00 N metal bar, 1.50 m long and having a resistance
of 10.0 Ω rests horizontally on conducting wires connect-
ing it to the circuit shown in the figure. The bar is in a
uniform 1.60 T magnetic field and is not attached to the
wires in the circuit. What is the acceleration of the bar
just after the switch S is closed?

(NOTE: Assume B⃗ is pointing down into
the page, instead of the direction shown

in the figure.)

The early discussion is the same as in the previous problem. We still end up with a 2 amp current
flowing through the bar but let’s look at the direction of the magnetic force now. F⃗ = Il⃗ × B⃗ with
l⃗ pointing from the top of the figure towards the bottom, and B⃗ pointing into the board, our cross
product this time gives us the direction of the force being to the right in the figure. The bar is still
feeling a force of gravity downward (keeping it in contact with the wires) but the magnetic force is
causing the bar to accelerate to the right. The magnitude of the force is the same as we computed
before: FB = IlB = (2.0)(1.5)(1.6) = 4.8 N . The mass of the bar was found to be 0.3058 kg so this
will create an acceleration to the right of m = F/m = (4.8)/(0.3058) = 15.7 m/s2.

The downward force of gravity will keep the bar in contact with the wires, so the bar will continue
to accelerate until it reaches the end of the ‘track’, leaving the mechanism with some reasonably high
velocity.

(We’ll see different and far more effective versions of this mechanism later.)


