
Chapter 28 Examples : Sources of Magnetic Fields

Key concepts:

• µo = 4π × 10−7 T m/A (called the permeability of free space); analogous to ϵo that appears in
many electric field calculations

• Magnetic field around a straight wire: B = µo

2π
I
r
(Direction from RHR with thumb in direction

of current.)

• Magnetic force between two parallel currents (wires) separated by a distance d: F/L = µo

2π
I1I2
d

(Attractive if currents in same direction; repulsive if opposite direction)

• Ampere’s law:
∮
B⃗ · d⃗l = µoIencl

• Interior of a solenoid: B = µonI where n is the number of loops per meter

• Interior of a toroid: B = µoNI
2πr

• Biot-Savart : computing magnetic field from non-straight currents: B⃗ = µoI
4π

∫ d⃗l×r̂
r2

• Magnetic field created by a moving point charge (not covered in this book): B⃗ = µo

4π
qv⃗×r̂
r2



Magnetic Field from a lightning strike

Lightning bolts can carry current up to approximately 20 kA. We can model such a current as the
equivalent of a very long, straight wire. (a) If you were unfortunate enough to be 5.0 m away from such
a lightning bolt, how large a magnetic field would you experience? (b) How does this field compare to
one you would experience being 5.0 cm from a long, straight household current of 10 A?

(a) The magnitude of the magnetic field from a long current-carrying ‘wire’ is B = µoI
2πr

so here,

B = (4π×10−7)(20,000)
2π×5

= 8 × 10−4 T . (Note this is 8 gauss, which is about 16 times stronger than the
magnetic field of the earth, so would at least briefly cause compasses to change direction.)

(b) For the household wiring, we have I = 10A and r = 0.05 m, so B = µoI
2πr

= (4π×10−7)(10)
2π×0.05

=
4.0× 10−5 T .

The Earth’s magnetic field is about 5× 10−5 T , so close to the wire the magnetic field from the wire
can easily be stronger than the Earth’s field, and should cause significant deflections of a compass
needle.

Fortunately, the current flowing in household wiring (and most wiring for that matter) is usually AC
current, so it is changing direction back and forth at 60 times per second. At best, we should see the
compass needle trying to swing back and forth that fast, and the inertia in the needle will make that
difficult to see.



Compass Interference from Power Lines

Two hikers are reading a compass under an overhead
transmission line that is 5.50 m above the ground and
carries a current of 800 A in a horizontal direction from
north to south. (a) Find the magnitude and direction
of the magnetic field at a point on the ground directly
under the conductor. (b) One hiker suggests they walk
on another 50 m to avoid inaccurate compass readings
caused by the current. Considering that the magnitude
of the earth’s field is of the order of 0.5× 10−4 T , is the
current really a problem?

The figure shows a ‘top down’ view of the current. From the right hand rule, if you point your thumb
in the direction of the current, your fingers will curl in the direction of the magnetic field. ABOVE
the wire, the field will be pointing to the west. To the left of this current, the field will be pointing
down. Directly underneath this wire, the field will be pointing to the EAST, and so on.

(a) The magnitude of the field from a long straight wire is B = µoI
2πr

so here: B = (4π×10−7)(800)
2π×5.50

=
2.91 × 10−5 T . The magnetic field of the earth is about 0.5 gauss, or 5 × 10−5 T so these are nearly
the same, and being this close to the power line would definitely throw off the compass.

(b) If you walked 50 m directly away from the power line, you’re now located 5.5 meters below and
50 meters off to the side, so the distance to the wire is now r =

√
502 + 5.52 = 50.3 m, which makes

the magnetic field magnitude equal to B = µoI
2πr

= (4π×10−7)(800)
2π×50.3

= 3.19 × 10−6 T , which is now about
16 times weaker than the earth’s field. (That’s still enough to throw the compass off about 4 degrees
though...)

BUT : This is all assuming the wire is carrying a DC current. Power transmissions lines use AC,
so the current direction will flip back and forth 60 times a second - almost certainly too fast for the
needle to deflect very far.)



Magnetic Forces in wiring

The wires in a household lamp cord are typically 3.0 mm
apart center to center and carry equal currents in oppo-
site directions. If the cord carries current to a 100 W
light bulb connected across a 120 V potential difference,
what force per meter does each wire of the cord exert on
the other? Is the force attractive or repulsive? Is this
force large enough so it should be considered in the de-
sign of the lamp cord? (Model the lamp cord as a very
long straight wire.)

Let’s look at the wire on the left:

From the right-hand rule, it will create a magnetic field circulating around that wire. With your thumb
pointing in the direction of the current, your fingers curl in the direction of the field, so the left wire
will create a magnetic field that is pointing downward into the page at the location of the wire on the
right side. OK, so now we have a field pointing INTO the paper, and a current in that other wire
flowing DOWN the page. The force a current-carrying conductor feels in a magnetic field is given by
F⃗ = Il⃗ × B⃗, which means that this force is pushing off to the right. So the left current is exerting
a force repelling the right current. (A similar argument shows that the right-side current is repelling
the left-side current.)

Section 28-2 shows that the force per unit length between two parallel conductors is: F
L
= µoII′

2πr
. Here,

the current is the same in both wires, and we can find what it is from P = V I or I = P/V =
(100)/(120) = 0.8333 amps. The force (per meter) between the two wires in the lamp cord will be
F
L
= (4π×10−7)(0.8333)(0.8333)

2π×(3×10−3)
= 4.6× 10−5 N/m.

This is a pretty feeble force, probably smaller than the weight of the cords.

Since we’ve been mentioning DC vs AC currents in the prior problems, what effect would that have
here? The actual current in the wiring will be AC (which means the current amplitude will be different
than what we just computed - see below). At one instant, the current in the ‘left’ wire will be in towards
the bulb and that same current will be flowing out from the bulb in the ‘right’ wire, so the two currents
are in opposite directions and will repel. A brief time later, the current reverses direction and the left
wire has current out from the bulb and the right wire has current into the bulb. They’re still in the
opposite direction from one another, so will still be trying to repel each other. The magnitude of the
force will fluctuate 60 times per second, but the direction will always be repulsive.

NOTE : in this example, I ignored the fact that this is AC current, not DC. The given power will be
Pavg and the given voltage is actually Vrms = 120 volts. This technically yields Irms = 0.8333 A (and
not I as I have above). We should really be looking at the actual amplitude of I(t) and not just it’s
RMS value. Irms = Io/

√
2 so the current amplitude here is really Io = Irms

√
2 = 1.18 A (with the

current varying between plus and minus that value). That increases the F/L value to twice what we
found above: F/L = 9.2 × 10−5 N/m, with the force now varying with time - fluctuating between 0
and that value.



Magnetic Forces between wires

Two long, parallel wires hang by 4.0 cm cords from a
common axis (see figure). The wires have a mass per
unit length of 0.0125 kg/m and carry the same current
in opposite directions. What is the (DC) current in each
wire if the cords hang at an angle of 6.0o with the vertical?

Section 28-2 shows that the force per unit length between two parallel conductors is: F
L
= µoII′

2πr
. Here,

the current is the same in both wires, and when the current is flowing in opposite directions the force
will be repulsive. (See the earlier problem 27 for this discussion.)

Looking along the wires then as shown in this figure,
and focusing on, say, the wire on the right, we have the
magnetic force pushing this wire outward, and gravity
pulling it downward. Things are in equilibrium now, and
we’ve done plenty of these types of problems in Physics
1. The balance of forces here requires that F⃗B, F⃗g and
the tension in the string add up to zero which ultimately
implies that tan θ = FB/Fg.

FB = µoI2L
2πr

and the distance between the two wires will be (from the trigonometry of the problem):
r = 2× (0.04 sin θ) = 0.08 sin 6o = 8.36× 10−3 m.

The gravitational force downward will be mg but we don’t know the mass here. We DO know the
mass per unit length, so we can write the mass as: m = (mass per length)(L). The force of gravity
is equal to Fg = mg = λLg where I’ve used λ to represent the mass per length.

We argued above that tan θ = FB/Fg so FB = Fg tan θ or µoI2L
2πr

= λLg tan θ.

Note here we have L on both sides of this equation so we can cancel it out now:

µoI2

2πr
= λg tan θ or rearranging to solve for the current:

I2 = (2πrλg tan θ)/(µo) = (2π)(8.36 × 10−3)(9.81)(0.0125) tan 6o/(4π × 10−7) = 538.2 or finally I =√
538.2 = 23.2 amps.



Rail-gun updated

Using what we’ve learned so far, we can design another type of railgun that is self-contained and does
not require an external source of magnetic field. (Note: this is a grossly simplified description that
leaves out a lot of practical detail, but it’s a start...)

The figure shows the geometry we’ll be
working with here. The two horizontal
lines represent the ‘rails’ of the railgun,
and we’re looking down on the system from
above. On the left, we have a source of
voltage (I drew this as a battery, but we’ll
see later this will need to be a capacitor.)
On the right, we’ve dropped a metal bar
across the rails (so this metal bar is free to
move).

Once the bar (which will become the projectile) is dropped across the rails, the circuit is complete
and current will flow. Using the right-hand rule, the current flowing to the right in the bar at the top
of the figure (rail 1) will create a magnetic field around that rail. With your thumb pointing in the

direction of the current flow, that means that B⃗ will be pointing into the page in the space where the
projectile exists. Looking at the other rail (rail 2), the current there is flowing to the left, and the

RHR again implies that the B⃗ swirling around that rail will also be pointing into the page in the space
where the projectile is located.

Looking at the projectile now, we have a current flowing towards the bottom of the page in the presence
of a magnetic field pointing perpendicularly down into the page. The projectile will feel a force of
F⃗ = IL⃗× B⃗ which is to the right, which will cause the projectile to accelerate to the right.

So that’s the general idea here: the current flowing through this configuration generates a magnetic
field which then causes the mobile part (the projectile) to accelerate down the rails until it leaves the
system at a considerable velocity.

Let’s try some arbitrary numerical values and see what happens.

Suppose I = 106 A and the tracks are separated by 5 cm.

(a) First, what will be the (approximate) force per unit length between these two tracks?

The equation we derived for the force between two current-carrying wires was for ‘infinitely long’ lines
of current; here we have a meter or two of rails, separated by a few centimeters, so we won’t be exactly
correct, but it’s a good first approximation:

F/L = µo

2π
I1I2
r

= 2× 10−7(106)2/0.05 = 4× 106 N/m.

Hm. So even if our rails are only a few meters long, we have to deal with forces between them on the
order of several million Newtons. For this reason, the ‘rails’ are usually just that: very solid metal
rails instead of just wires, with the rails solidly connected to some base so they can’t move, which is
quite a feat considering the millions of Newtons of force that will exist between them.



(b) If the projectile has a mass of 1 kg, what will be its acceleration?

There is a current I flowing through the projectile, so there will be a force of F⃗ = Il⃗ × B⃗ on it but
again that was for a current in a constant magnetic field, which we don’t quite have here. B will be
much stronger near the rails and weakest at the point in the middle between the rails. Let’s use the
magnetic field at the midpoint to get an estimate at least of how much force we have.

From each wire: B = µo

2π
I
r
where here r will be halfway between the two wires. And we have the same

magnitude (and direction) from the other wire, so overall we have twice that: B = µoI
πr

is roughly the
strength of the magnetic field in the midpoint.

The force on the payload will be F ≈ IlB so multiplying those out (and using r = l/2) we end up

with F ≈ µo

π
I2 .

In this case, with I = 106 amp, we get F ≈ 400, 000 N .

If we use a 1 kg payload, F = ma yields an acceleration of 400, 000 m/s2. From our 1-D equations of
motion, v2 = v2o + 2a∆x so if the rails are 2 m long, the payload will be ejected at the other end with
a speed of v ≈

√
2a∆x = 1300 m/s or about 3000 miles/hr.

And that’s for a railgun that’s only 2 meters long.

(c) How much energy does the projectile have when it leaves the gun?

K = 1
2
mv2 = (0.5)(1)(1300)2 = 850, 000 J .

This is so much energy that the projectile tends to just become a lump of molten metal.

The largest railguns to date have achieved projectile energies about 10 or 20 times as large.

(d) How much POWER does this thing need to operate?

Well, we know it has to inject 850,000 joules in the brief time interval while the thing is operating. How
long does it take the projectile to go from rest to being ejected? v = vo + at so 1300 = 0 + 400, 000t
so t ≈ 3× 10−3 s.

P = energy/time = (850, 000 J)/(3× 10−3 s) ≈ 280MW .

That’s about the total power output of a large nuclear power plant...

So how do these things work in the real world? How can I get that much power, considering I only
need it for a few milliseconds?

The only practical source is capacitors, or really a whole bank of lots of really big capacitors. Real-
world rail-guns are physically large mostly because of the massive banks of large capacitors needed.

(Continued...)



(e) Hand-held railgun pistol?

Suppose we want a less extreme railgun - something that would launch a bullet-sized mass at a typical
bullet velocity?

If we drop down to m = 20 gram = 0.02 kg with a desired launch speed of 200 m/s, achieved over a
distance of about 20 cm, this implies an acceleration of: v2 = v2o+2ax∆x so (200)2 = (0)2+(2)(a)(0.2)
so a = 100, 000 m/s2 which means we need a force of F = ma = (0.02)(100, 000) = 2000 N .

We found above that for this geometry, F ≈ µo

π
I2 so if we only need 2000 N of force, we need a current

of ‘only’ 71, 000 amp. (Not sure I want to be holding anything in my hand that has that much current
flowing through it, even for a few milliseconds...).

How much energy do we need to store in our capacitors? The bullet leaves the barrel with a kinetic
energy of K = 1

2
mv2 = (0.5)(0.02)(200)2 = 400 J . How large physically would the capacitor need to

be to do that? High-tech supercapacitors have energy storage densities around 10, 000 J/kg and up
so storing that much energy (or several times that, so we can fire multiple rounds) isn’t out of the
question.

You can find examples of home-built railguns on youtube, along with another approach using coils
(see: coil guns) that are essentially solenoids on steroids...



Magnetic Field In a Loop of Wire
Suppose we bend a wire into a circle of radius R as
shown in the figure. The wire carries a current of
I amps. What is the strength and direction of the
magnetic field at the center of the circle?

The Biot-Savart equation tells us that a little d⃗l
segment of wire carrying a current of I creates a mag-
netic field element dB⃗ at some point P equal to:

dB⃗ = µoI
4πr2

d⃗l × r̂

Before we pull in any equations, let’s look at what sort of magnetic field this loop of wire is creating.

The two wires that are bringing the current into and out of the loop are nearly on top of one another,
so their magnetic fields will cancel. More than that though - since those lines are basically radial
towards or away from point P, the d⃗l and r̂ vectors are either parallel or anti-parallel, so their cross
product is zero. Either way, we can ignore them.

Looking at a little element d⃗l along the circumference
of the circle, d⃗l is perpendicular to r̂ everywhere so
the sine of the angle between them is 1. From the
RHR, their cross product creates a vector coming
straight up out of the page. Also, since each of those
elements is located at r = R, they’re all the same
distance from the point P, so the magnetic field that
each element contributes is identical.
The magnitude of each element will be: dB = µoI

4πR2dl
and now we can integrate over all of them: B =∫
dB =

∫ µoI
4πR2dl =

µoI
4πR2

∫
dl where in the last step

we pulled out everything that was a constant.

The integral of dl over a circle is just the circumference of the circle, or 2πR so B = µoI
4πR2 (2πR) which

finally simplifies to B = µoI
2R

and we previously determined that this field as a vector is pointing

straight up out of the page.

Note how this behaves: the smaller the radius of the loop, the larger the field at the center of the
loop will be. This can be a problem with integrated circuits where the currents may be small through
some tiny piece of the circuit, but the sizes are so small that significant (albeit localized) magnetic
fields can be generated which can affect currents flowing through other nearby parts of the circuit.

Also, we just encountered yet another right-hand rule. Here we have current flowing around a loop.
If you curl your fingers in the direction of I, your thumb will point in the direction of the B⃗ created
by that current loop. In this problem, the current was flowing counter-clockwise around the loop
and produced a magnetic field coming up out of the loop’s plane. If we turn the current around, the
magnetic field will point down into the page.



Magnetic Field In a Partial Loop of Wire
Let’s modify the previous problem so that the loop
is just a semi-circle as shown in this figure. The
radius of the semi-circle is still R, and still car-
rying a current of I. How strong (and in what
direction) will the magnetic field be at point P
located at the center of the circle?

What has changed from the previous problem? If
we look at the two straight parts of the line, each
little d⃗l element along those lines will be pointing
towards (or away from) point P, meaning they’re
parallel or anti-parallel to the r̂ vectors that point
from that element to the point of interest P. Those
two segments of the wire won’t contribute any-
thing to the magnetic field at point P.

Along the semi-circle, each d⃗l is still perpendicular to the r̂ at that point, so d⃗l × r̂ is still just dl in
magnitude, and represents a vector coming up out of the page.

The magnitude of each element is still: dB = µoI
4πR2dl and now we can integrate over all of them:

B =
∫
dB =

∫ µoI
4πR2dl =

µoI
4πR2

∫
dl where in the last step we pulled out everything that was a constant.

The only difference this time is we are not integrating over an entire circle - just half the circle. So∫
dl becomes half the circumference of the circle of just πR, leaving us with:

B = µoI
4πR2 (πR) which finally simplifies to B = µoI

4R
and we previously determined that this field as a

vector is pointing up out of the page.

This half-circle creates a magnetic field (at point P anyway) that is half the strength of the full loop.

NOTE: see also Example 28-13 in the book for a ‘quarter-circle’ loop where the wire is bent in a
particular way that we can still ignore the field produced by wires coming into and going out from the
arc.



Solenoids

A particular solenoid has a diameter of 1 cm and
is 5 cm long. Wire is wrapped tightly around
the cylinder from one end to the other, making
5000 turns in total. How much current would we
need to run through it to create a magnetic field
of 1 T inside the solenoid?

The radius or diameter of the solenoid is a red herring since it actually doesn’t affect the strength of
the magnetic field except near the edges.

The magnetic field within the interior of the solenoid has a magnitude of B = µonI where n is the
number of loops per meter the wire makes. We have 5000 loops of wire along a distance of 5 cm
(0.05 m) so n = (5000 loops)/(0.05 m) = 100, 000 loops/meter.

We desire B = 1 T so: B = µonI becomes (1) = (4π × 10−7 T m/A)(100, 000 m−1)(I) or 1 =
0.1256637..I so I = 7.96 amp.

Toroids

Suppose we have a toroid that’s about 2 meters
across and we desire a magnetic field inside the
toroid to be about 10 Tesla. What does that imply
about the current and/or the number of turns of
wire we need?

The magnetic field inside the toroid (i.e. inside
the ‘tube’ the wire is wrapped around) is: B =
µoNI
2πr

where r is the distance from the center of
the circle to the point inside the toroid, so the
magnetic field is slightly non-uniform along the
barrel of the tube.

With the given size and desired field strength, let’s assume r ≈ 1 m and B ≈ 10 T . Rearranging the
equation a bit:

NI = 2πrB/µo = 2π(1)(10)/(4π × 10−7) = 5× 107

We need a lot of loops, or a very high current, or some combination such that their product is quite
large. We don’t want to melt the wires, so are probably limited to a hundred amps or so. If I = 100 A,
then we’ll need N = 500, 000 loops of wire around the tube in order to create the desired field strength.

Toroidal shapes have been experimented with as part of developing the concept of fusion reactors
where super-high temperature plasma is held in place by magnetic fields to keep it from touching the
sides of the chamber.


