
Chapter 29 Examples : Electromagnetic Induction and Faraday’s Laws

Key concepts:

Changing magnetic fields induce EMF’s (voltages); a result referred to as electromagnetic induction

Magnetic flux: ΦB =
∫
B⃗ · dA⃗

Faraday’s law of induction: ξ = −dΦB

dt

If the circuit contains N loops closely wrapped so the same flux passes through each, the overall EMF
induced is ξ = −N dΦB

dt

Lenz’s law: a current produced by an induced EMF moves in a direction so that the magnetic field
created by that current opposes the original change in flux

Coil with N loops rotating at angular speed ω in a constant field B: ξ = NBAω sin (ωt) = ξo sin (ωt)

Moving conductor: |ξ| = BLv

(A/C) Transformer: Vs = NsdΦB/dt Vp = NpdΦB/dt so Vs/Vp = Ns/Np

Assuming nearly 100% efficiency, Pp = Ps so P = IV implies: Is/Ip = Np/Ns

Changing magnetic flux produces an electric field (general form of Faraday’s law):
∫
E⃗ · d⃗l = −dΦB/dt



Electromagnetic Induction(1)

A flat, rectangular coil consisting of 50 turns measures 25.0 cm by 30.0 cm. It is in a uniform 1.20 T
magnetic field, with the plane of the coil parallel to the field. In 0.222 s, it is rotated so that the
plane of the coil is perpendicular to the field. (a) What is the change in the magnetic flux through the
coil due to this rotation? (b) Find the magnitude of the average EMF induced in the coil during this
rotation.

(a) The flux ΦB =
∫
B⃗ ·dA⃗. EACH turn of the coil has this flux passing through it. Initially, B⃗ and A⃗

are in the same direction, so the flux through each turn in the coil becomes simply BA. The total flux
through all N = 50 loops then will be ΦB = NBA. The area is A = (0.25 m)(0.30 m) = 0.075 m2, so
here we start off with a flux of ΦB = (50)(1.20 T )(0.075 m2) = 4.5 T m2. (The units of magnetic flux
are usually expressed in ‘Webers’, with 1 Wb = 1 T m2 so we can also write this as ΦB = 4.5 Wb.)

(b) Now we suddenly turn the coil so that the plane of the coil is perpendicular to the field. That

means that A⃗ is now perpendicular to B⃗, which means the magnetic flux through the coil is now
ZERO.

The EMF induced when the magnetic flux changes is given by Faraday’s Law: ξ = −dΦ
dt
. They’re vague

about exact directions here, so we really can’t say anything about the sign of this EMF so going forward
I’ll just consider its magnitude. Here, the flux is changing from 4.5 Wb to zero in a time interval of
0.222 s, so we can approximate the induced EMF to be |ξ| ≈ ∆Φ/∆t = (4.5)/(0.222) = 20.3 V . (So if
we connect this coil up to a voltmeter and flip it quickly, we should see the voltmeter - briefly - read
this voltage, then drop back to zero.)



Electromagnetic Induction (2)

In a physics lab experiment, a coil with 200 turns enclosing an area of 12 cm2 is rotated in 0.04 s from
a position where its plane is perpendicular to the earth’s magnetic field to a position where its plane
is parallel to the field. The earth’s magnetic field at the lab location is 6.0× 10−5 T . (a) What is the
total magnetic flux through the coil before it is rotated? After it is rotated? (b) What is the average
EMF induced in the coil?

This problem is sort of the reverse of the previous one. We start off with the area vector A⃗ being
perpendicular to the magnetic field, so the initial flux is zero. Then we turn the coil so that the area
vector is parallel to the field, making the angle between them either 0 or 180, they don’t really specify.
So as in the first problem, we’ll just ignore the sign and worry about the magnitude of the induced
EMF: |ξ| ≈ ∆Φ/∆t.

When the area is parallel to the field, the flux will be ΦB = BA in each turn, for an overall flux of
ΦB = NBA through all N turns in the coil. Be careful converting the units of the area. A = 12 cm2

so we have TWO factors of cm we need to convert to m:

A = 12 cm2 × 1 m
100 cm

× 1 m
100 cm

= 12× 10−4 m2.

The flux at this point then is: ΦB = NBA = (200)(6× 10−5 T )(12× 10−4 m2) = 1.44× 10−5 T m2.

This makes the induced average voltage: |ξ| ≈ ∆Φ/∆t = (1.44× 10−5)/(0.04) = 3.6× 10−4 V .

The Earth’s magnetic field is pretty weak; here we’re rotating a coil around in this field and turning
the coil into a source of voltage. If we increase the size of the coil and/or increase the number of
turns of wire in the loop, or speed up the rotation, we might be able to create a device that converts
mechanical energy (something has to be causing the loop to rotate) into electrical power directly. How
practical would it be to create something like this that would act like a 9 V battery? A 120 V source?
(See example 7.)



Electromagnetic Induction (3)

A circular loop of wire with a radius of 12.0 cm and oriented in the horizontal xy-plane is located in
a region of uniform magnetic field. A field of 1.5 T is directed along the positive z-direction, which is
upward. (a) If the loop is removed from the field region in a time interval of 2.0 ms, find the average
EMF that will be induced in the wire loop during the extraction process. (b) If the coil is viewed
looking down on it from above, is the induced current in the loop clockwise or counterclockwise?

As with the first two problems, the induced EMF will equal the change in flux divided by the time
interval. This time, we’ll be careful about the signs.

Let’s choose a direction for the area vector A⃗ so that it is in the same direction as the field. (This
implies, by the right-hand rule, that the ‘path’ around the edge of this circle - i.e. the path through
our wire - is counterclockwise, when viewed from above.) Initially, then, we have a flux of B⃗ · A⃗ =
(B)(A) cos 0 = BA. The area of the coil is A = πr2 = π(0.12)2 = 0.04524 m2. The flux then at this
point is ΦB = BA = (1.5)(0.04524) = 0.06786 Wb.

The coil is then withdrawn from the field, so the flux now is zero. The change in flux divided by the
change in time (the EMF) is: ξ ≈ −∆Φ/∆t = −(0− 0.06786)/(2× 10−3) = +33.9 V .

Having A⃗ pointing up in the +z direction implies that the loop we are taking is a counterclockwise walk
around the edge of the circle, so we are saying here that the EMF is increasing in the counterclockwise
direction. These things act like batteries instead of resistors, so the current is flowing in the direction
of the EMF, so I is moving counterclockwise as well.

(Looking at it from the Lenz perspective, the ‘induced’ effect should occur in a way that tries to oppose
the effect. Here we have a flux that is decreasing, so the induced current will move in a way that tries
to increase the flux. A counterclockwise current will do that, since it will produce a magnetic field B⃗′

that is in the +z direction (same as the direction of A⃗, which will cause a positive flux...)



Electromagnetic Induction (4)

A rectangle measuring 30 cm by 40 cm is located inside
a region of a spatially uniform magnetic field of 1.25 T ,
with the field perpendicular to the plane of the coil. The
coil is pulled out at a steady rate of 2 cm/s, travelling
perpendicular to the field lines. The region of the field
ends abruptly as shown. Find the EMF induced in this
coil when it is (a) all inside the field; (b) partly inside
the field; (c) all outside the field.

(a, c) While the loop is entirely inside the field, the flux isn’t changing: ΦB =
∫
B⃗ · dA⃗ = BA during

this interval. So as long as the wire remains entirely inside the field, and doesn’t rotate, the flux isn’t
changing. The induced EMF depends on CHANGES to the flux, so for now the induced EMF will be
zero. In part (c), we are entirely outside the field, so the flux is zero and remains zero, so there is no
change in flux there, and hence the induced EMF in the loop will be zero.

(b) Here we are partly in the field and partly outside. We can write the area as A = XY where X
is the length of side of the rectangle in the x-direction (left-right) and Y is the length of the side in
the y-direction (north-south, or up-down on the page). We can write ξ = −∆Φ/∆t where Φ = BA
here (with A being the part of the area that is inside the field, since B = 0 outside the region shown).
ξ = −∆(BA)/∆t = −∆(BXY )/∆t = −BY∆X/∆t. This is now in the form we need. The X
(left-right) length of the loop is DECREASING by 2 cm/s, so ∆X/∆t = −0.02 m/s.

Finally, ξ = −(1.25 T )(0.40 m)(−0.02 m/s) = +0.01 V .

(Even with this very large magnetic field, moving the loop slowly is inducing only a very small EMF
in the loop.)



Electromagnetic Induction (5)

How fast (in m/s and mph) would a 5.00 cm copper bar have to move at right angles to a 0.650 T
magnetic field to generate 1.50 V (the same as a AA battery) across its ends? Does this seem like a
practical way to generate electricity?

This is a classic ‘motional EMF’ problem (see section 29-3). In general ξ =
∫
(v⃗ × B⃗) · d⃗l. Here

everything is constant and v⃗ is perpendicular to B⃗. The cross product produces a vector along the
bar, so the dot product goes away as well. In the end, this simply reduces to ξ = vBL (figure 29.12).

Here then, we want ξ to be 1.50 V and we have the length of the rod and the strength of the magnetic
field so ξ = vBL becomes: (1.5) = (v)(0.65)(0.05) or v = 46.15 m/s which is about 103 miles/hr.

This is pretty fast, and 0.65 T is a large magnetic field, so it would take rooms worth of equipment to
generate this 1.5 V of EMF. Doesn’t sound very practical...



Electromagnetic Induction (6)

A long straight solenoid with a cross sectional area of 8.00 cm2 is wound with 90 turns of wire per
centimeter, and the windings carry a current of 0.350 A. A second winding of 12 turns encircles the
solenoid at its center. The current in the solenoid is turned off such that the magnetic field of the
solenoid becomes zero in 0.04 s. What is the average induced EMF in the second winding?

The current in the solenoid creates a strong magnetic field in its interior. When we turn off the circuit,
the current takes a brief amount of time to drop to zero, during which time the magnetic field inside
the solenoid is dropping to zero as well.

Looking at this from outer coil’s point of view, it sees a changing magnetic field (thus a changing
magnetic flux), but that will create an emf in the outer coil.

Note: the problem gave us no information on the direction the wires were wound on the solenoid, or
the direction around the outer loop, so we’ll just worry about the magnitude of the effect here. We
can’t say anything about the direction of the EMF induced in the outer loop.

The magnetic field inside a solenoid is uniform and of magnitude B = µonI where I is the current
flowing in the wires making up the solenoid, and n is the number of turns per unit length. We need
everything in standard metric units, so n = 90 turns/cm = 90 turns

1 cm
× 100 cm

1 m
= 9000 turns/meter. The

magnetic field throughout the interior of the solenoid then is B = µonI = (4π× 10−7)(9000)(0.350) =
3.958 × 10−3 T . This field is parallel to the axis of the solenoid. When the current shuts off, this
magnetic field drops to zero in 0.04 s. (Note: the magnetic field inside this solenoid is roughly 100
times larger than the earth’s field.)

Let’s move to the outer windings now. They encompass a certain magnetic flux, and that flux is
changing, dropping to zero in a short time interval. Changing magnetic flux induces a current. The
total flux through the N = 12 turns of the outer coil is ΦB = NBA initially, and ΦB = 0 after the
current is gone. That initial flux is ΦB = NBA and we need everything in standard metric units. B
is nonzero only over an area of 8 cm2 which is 8 × 10−4 m2 so ΦB = (12)(3.958 × 10−3)(8 × 10−4) =
3.80× 10−5 Wb. The induced EMF is ξ = −∆Φ/∆t = −(0− 3.8× 10−5)/(0.04) = 9.5× 10−4 V .

This is basically a type of transformer. Imagine if some sinusoidally varying voltage were being
applied to the inner solenoid. The wire has some resistance, so this voltage turns into a sinusoidally
varying current. This causes a sinusoidally varying magnetic field in the interior of the solenoid, which
means that the outer coil is seeing a changing magnetic flux. The derivative of this flux produces a
cosinusoidally varying EMF in the outer loop. The geometry (area, number of turns on wire in each
coil) enter in as various scale factors and we end up turning a varying voltage of one amplitude (120 V ,
say) into a varying voltage of a different amplitude: maybe 12 V or 18 V or something else that the
parts in your computer are designed for. The ‘cost’ here is that these varying voltages are out of phase
from the original, but that usually doesn’t matter.



Electromagnetic Induction (7) : Hand-cranked ‘battery’

You are shipwrecked on a deserted tropical island. You have some electrical devices that you could
operate using a generator but you have no magnets. The earth’s magnetic field at your location is
horizontal and has magnitude 8.0×10−5 T , and you decide to try to use this field to power a generator
formed by rotating a large circular coil of wire at a high rate. You need to produce a peak EMF of
9.0 V and estimate that you can rotate the coil at 30 rpm by turning a crank handle. You also decide
that to have an acceptable coil resistance, the maximum number of turns the coil can have is 2000.
(a) What area must the coil have? (b) If the coil is circular, what is the maximum translational speed
of a point on the coil as it rotates?

If we orient the coil so that the plane of the coil is vertical and then rotate it about the Z axis,
we’ll basically have the area vector A⃗ pointing in the same direction as B⃗ and then rotating to be
perpendicular to the field, then in line again, and so on. Imagine a big circular ring with one side on
the ground and the other up in the air.

The direction of A⃗ will be spinning around so that the angle between A⃗ and B⃗ will be increasing as
θ = ωt. We can write the magnetic flux through this area as ΦB =

∫
B⃗ · dA⃗ = BA cos θ = BA cosωt.

That is the flux through each loop of the coil, and have enough wire to make 2000 loops, so the total
flux will be Φ = 2000BA cosωt.

The induced EMF then will be ξ = −dΦ/dt = 2000BAω sinωt. The EMF will vary sinuisoidally
between 2000BAω and −2000BAω. We desire this maximum EMF to be 9.0 V so we need 2000BAω =
9.

We have B, the strength of the (weak) magnetic field of the earth. Apparently we think we can spin
this thing at 30 rpm or 30 complete revolutions per minute. Converting this angular speed to radians
per second: ω = 30 rev

min
× 2π rad

1 rev
× 1 min

60 sec
= π rad/sec. (This corresponds to a period for one complete

rotation of T = 2π/ω = 2 s

(a) In our equation for the EMF, then, we have: 9 = 2000BAω = (2000)(8× 10−5)(A)(π) from which
A = 17.9 m2.

(b) If the coil is in the shape of a circle, the area is A = πr2 so this area represents a radius of 17.9 = πr2

or r = 2.39 m. (That makes the diameter about 4.8 m or around 15 feet.) A point on the edge of the
circle moving the fastest would have a tangential speed of v = rω = (2.39 m)(π rad/s) = 7.5 m/s.

At this point, this does not seem very practical. Imagine a ring 15 feet across that we are trying to
keep spinning in a circle so that it makes a complete revolution every 2 seconds. There would certainly
be a lot of air resistance, and it would be quite a lot of work to generate that 9 V of ‘battery power.’

On the other hand, this process is used by wind turbines to generate electricity. The wind causes
a large propeller to rotate which is attached to a large coil that is now rotating in a magnetic field
created by powerful permanent magnets, generating considerable amounts of power. Small turbines
can generate power in the kilowatt range, with large turbines (such as those used in ‘wind farms’) can
generate power in the megawatt range.



EMF induced in a necklace near a high frequency current

Occasionally you run into warning signs around electronics that suggest removing any rings, watches,
necklaces, even belts - basically anything that might represent a ‘loop’ where an EMF could be induced.

Suppose we’re standing 5 meters from a modest 2 A current that’s oscillating at 1 GHz. We’re
wearing a necklace, which we’ll model as a circular loop with a radius of 5 cm. Estimate how much
power the necklace will be emitting as heat.

The varying current in the wire will create a time-varying magnetic field swirling around the wire.
That means the magnetic flux through the necklace will be changing with time, but that implies a
voltage is being generated around the loop. The necklace will have some very low resistance, so this
‘resistor’ will be emitting P = V 2/R watts of heat.

The current is varying sinusoidally with time, so I = Io sin (ωt)

This current will create a magnetic field curling around the wire with a magnitude of B = µoI
2πr

. The

magnetic flux through the necklace will be ΦB =
∫
B⃗ · A⃗. Let’s assume the necklace is oriented so

the magnetic field is coming straight through it, so B⃗ and A⃗ are in the same direction. Technically B
depends on r, but let’s assume it’s approximately constant here. Then ΦB = BA = µoIoA

2πr
sin (ωt).

The EMF generated will be ξ = −dΦB/dt = −µoIoAω
2πr

cos (ωt).

So: we have a sinusoidally-varying voltage around the loop represented by the necklace. The amplitude
of this voltage will be Vmax = µoIoAω

2πr
.

So far so good - let’s put our numbers in place now. The necklace has a radius of 5 cm so the area will
be A = π(0.05)2 = 7.85 × 10−3 m2. The angular frequency ω = 2πf = 6.28 × 109 s−1. The current
amplitude here is Io = 2 amps, and we’re r = 5 m away. Putting all that together:

Vmax = (4π×107)(2)(0.00785)(6.28×109)
(2)(π)(5)

≈ 4 volts.

The power this ‘resistor’ will emit as heat will be P = V 2/R, so what’s the resistance of the necklace?
Well, if we ‘unroll’ the necklace, we can think of it as a wire with some length and some cross-sectional
area. The resistance of this ‘wire’ then will be R = ρL/A (different A than above... this A is the cross
sectional area of the ‘wire’.) L = 2πr = 0.314 m. The cross sectional area could be anything, but
suppose the necklace is about 2 mm by 1 mm, so A = (0.002)(0.001) = 2 × 10−6 m2. ρ for gold is
about 2.4× 10−8 so R = ρL/A = (2.44× 10−8)(0.314)/(2× 10−6) ≈ 4× 10−3 Ω.

P = V 2/R = (4)2/(0.004) = 4000 watts. This thin gold necklace will be emitting around 4000 watts
of heat just by being in the presence of this high frequency oscillating current. Hence the warning
about removing jewelry and anything else that might have loops that could have voltages induced in
them. (Including phones, laptops, or anything else with circuitry inside since those are full of loops of
various sizes...)



EMF Induced in a Moving Conductor (A)

Consider a 1.2 m long antenna mounted vertically on a vehicle that is travelling to the east at 30 m/s.
Assuming the Earth’s magnetic field is directly to the north, what voltage difference will be generated
between the top and bottom of the antenna?

Let’s look at the ‘free electrons’ in the antenna. The antenna doesn’t have a net charge (probably) but
the outermost electrons on the metal forming the antenna are so loosely bound that they are essentially
free to move around within the metal. The antenna is moving to the east, so the free electrons within
it are travelling to the east through a magnetic field that is pointing to the north. They will feel a
force of F = qv⃗ × B⃗ which is directed vertically downward. (Note: the v⃗ to the east crossed into the

magnetic field B⃗ to the north will produce a vector pointing UP but when we multiply by q, which
is negative, the force will be DOWN.) The net effect is that electrons are flowing downward in the
antenna.

We end up with the top part of the antenna being positively charged and the bottom negatively
charged. That’s an electric field in the antenna that is pointing downward. V = −

∫
E⃗ · d⃗l so the

voltage is increasing as we move upward along the antenna.

The magnitude of this effect is ξ = BLv. Here, B = 5×10−5 T (the weak magnetic field of the Earth),
L = 1.2 m (length of the antenna), and v = 30 m/s so ξ = (5 × 10−5)(1.2)(30) = 1.8 × 10−3 volts
which is present, but probably too small to worry about.



Transformer (A)

Consider a solenoid with 1000 loops that’s connected to a 120 V AC source that’s providing 1 A
of current. We’ll add an insulating coating, then wrap another soleoid around this one. The outer
solenoid has just 40 loops. What current and voltage will be coming out of the outer solenoid?

This is a transformer - the side that’s connected to the EMF source is called the primary, and the
other side is the secondary.

The voltage across the ends of each loop of a coil are related to the rate of change of the magnetic flux
inside that coil via ξ = −dΦB/dt. We have N loops, so ignoring signs, we can say that the voltage
across the primary will be Vp = NpdΦB/dt and the voltage across the secondary will be Vs = NsdΦB/dt.

It’s the same flux for both of them, so Vp/Np = Vs/Ns or Vs = Vp(Ns/Np) which in this case will be

Vs = (120 V )(40/1000) = 4.8 V .

Transformers are usually very efficient, so the input and output electrical power is essentially the

same on each side. P = IV so IpVp = IsVs or Is = Ip(Np/Ns) which in this case will be Is =

(1 A)(1000/40) = 25 A.



Transformer (B)

Consider the problem of transferring electrical power over long distances - hundreds or even thousands
of miles. Some amount of current is flowing through these long wires. Recall from an early chapter
that the resistance of wire is R = ρL/A (where L is the length of the wire, and A is it’s cross-sectional
area). Since the wire has some resistance, some electrical power will be lost due to that: Plost = I2Rwire

so the higher the current, the more power will be lost.

Is there a trick where we can reduce the current but still transmit the same amount of power to the
end users hundreds of miles away?

Suppose we have a 100, 000 W generator that’s producing 100 V . That implies a current of P = V I or
I = P/V = (100, 000)/(100) = 1, 000 amps. If our powerline wires have a very low resistance - say 1
ohm, then the power loss due to this resistance would be P = I2R = (1000)2(1) = 1, 000, 000 W which
is more than we’re generating... (Obviously that won’t happen, but it does show that we’ll essentially
lose all the power we’re generating to heat.)

Suppose we send our source through a transformer or a series of transformers that convert that 100 V
voltage source into a 10, 000 V signal? From the previous example, this 100 : 1 increase in the voltage
will come with a 1 : 100 reduction in the current, so we now have a source that is providing 10 A at
10, 000 V .

How much power will be lost due to the resistance of the wires now? P = I2R = (10)2(1) = 100 W
which is almost nothing compared to the 100, 000 W the power station is producing.

There are several practical limits that get in the way. Transformers are not 100 percent efficient,
so we’ll lose some power there. Also the higher the voltage we send down the wires, the more the
insulating coating will degrade, and so on. Still, real world long distance power lines typically operate
in the range of 30, 000 V to 150, 000 V .


