
Chapter 30 Examples : Inductance

NOTE: this is being revised and expanded to include several examples related to impedance in AC
circuits, which are missing entirely from this version. I’ll let you know when the updated pdf is
available.

Key concepts: (See chapter 29 also.)

ξ2 = −MdI1/dt : A changing current in a coil of wire (1) will induce an EMF in a second coil (2)

placed nearby. The mutual inductance (M) is defined as the proportionality constant that relates
these directly.

Mutual inductance of two solenoids of the same length and (essentially) the same cross sectional area,
one inside the other: M = µoN1N2A/l where N1, N2 are the number of loops in each solenoid, A is
their cross-sectional area, and l is their length.

ξ = −LdI/dt : within a single coil, a changing current induces an opposing EMF, so the coil has

a ‘self-inductance’ which uses the symbol L instead of M.

Self-inductance of a solenoid of length l and number of turns N: L = µoN
2A/l

Energy stored in an inductor when a current I is flowing through it: U = 1
2
LI2

L-R circuit : when an inductor L, a resistor R and a constant voltage source Vo are connected in
series, the current will rise according to: I = Vo

R
(1−e−t/τ ) where τ = L/R, with the current eventually

levelling out at I = Vo/R.

If the battery is suddenly switched out (shorted across, say), the energy stored in the inductor is
released, producing a current I(t) = Ioe

−t/τ

L-C circuit : if a charged-up capacitor is connected in series with an inductor, the current will oscillate
with I(t) = Io sinωt where Io = ωQo and ω = 1/

√
LC

L-R-C circuit : if a charged-up capacitor is connected in series with an inductor and a resistor, the
resistor will gradually remove energy from the system, resulting in a damped motion. If R is low
enough, the system will still oscillate, but at a different frequency than the L-C case. If R is high
enough, the charge will just exponentially decline. (This section was not really covered, so there are
no related examples.)



Simple Example 1

We want to create a 200 mH inductor by wrapping wire around the carboard tube from the center of
a toilet-paper roll. The tube is 10 cm long and has a diameter of 3 cm. How many turns of wire do
we need to wrap around the tube?

We’re basically creating a solenoid geometry here, which has a self-inductance of L = µoN
2A/l.

We’re looking for N, so rearranging: N =
√

lL
µoA

.

Here, l = 10 cm = 0.10 m. The cross sectional area will be A = πr2 and here d = 3 cm so
r = 1.5 cm = 0.015 m so A = π(0.015)2 = 7.07 × 10−4 m2, and we were given that L = 200 mH =
200× 10−3 H = 0.2 H.

N =
√

lL
µoA

=
√

(0.1)(0.2)
(4π×10−7)(7.07×10−4)

= 4745.

Each loop of wire represents one diameter around the paper tube, so each loop will be C = 2πr =
(2)(π)(0.015 m) = 0.0942 m long. The total length of wire we would need then would be:
(4745)(0.0942 m) = 446 m. (That’s a lot of wire, so it will need to be pretty thin; we’ll deal with that
in the next problem.)

Simple Example 2

The thinner the wire, the higher the resistance, so assume we have a coil made from very thin wire
that has an inductance of 440 mH, and a resistance of 3.25 Ω.

Suppose that at some point in time, the current is 3 A but is also increasing at 3.60 A/s. What will
be the potential (voltage) difference across the coil at this moment?

We have two effects going on here. The 3 A current flowing through this 3.25 Ω resistance will result
in a voltage drop of V = IR = (3)(3.25) = 9.75 volts.

The increasing current will cause the flux in the coil to increase though, creating an EMF in the
opposite direction of ξ = −LdI/dt = −(440× 10−3)(3.60 A/s) = −1.584 V .

Following the direction the current is flowing in, the voltage drops across the resistor. Since the current
is increasing in that direction (causing the flux to increase), the EMF induced will be in the opposite
direction: it’s dropping in the direction the current is flowing, meaning it’s also a decrease in voltage.
Overall then, the total decrease in voltage across the inductor will be −9.75− 1.584 = −11.33 V .



Energy Stored in Inductors (1) : Suppose we have a solenoid that is 38 cm long and 2.1 cm
in diameter, and consists of 10000 turns of wire. When a (constant) current of I = 10 A is flowing
through it, how strong is the magnetic field inside the solenoid and how much energy is it storing?

(a) The magnetic field in a solenoid is B = µoNI/l so here, taking care to convert everything to
standard units: B = (4π × 10−7)(10000)(10)/(0.38) = 0.33 T . (Remember, 1 T = 10, 000 gauss so
this is 3300 gauss or about 6000 times stronger than the Earth’s magnetic field. This would be a very
strong field.)

(b) The energy stored in an inductor is U = 1
2
LI2, so we’ll need to determine L for this geometry.

For a solenoid, L = µoN
2A/l. The cross sectional area here is A = πr2 and we have d = 2.1 cm so

r = 1.05 cm = 0.0105 m so A = (π)(0.0105 m)2 = 3.46× 10−4 m2.

Putting things together then: L = µoN
2A/l = (4π × 10−7)(10000)2(3.46 × 10−4)/(0.38) = 0.1144 H

or 114.4 mH, so finally U = 1
2
LI2 = (0.5)(0.1144)(10)2 = 5.72 J .

Energy Stored in Inductors (2) : The magnetic field inside an air-filled solenoid is measured to
be 0.6 T . The solenoid is 38 cm long and has a diameter of 2.1 cm but here we don’t know the number
of turns or the current. How much energy is this inductor holding?

We’re missing some of the bits we used in the previous example, but we do have the magnetic field
this time, so maybe that will be enough.

For this geometry, we have: B = µoNI/l and L = µoN
2A/l and we want to find U = 1

2
LI2.

We don’t know what the current is, so let’s try to eliminate I from that equation. We can rearrange
the B equation to solve symbolically for I: I = Bl

µoN
. In our equation for U , if we replace L with

L = µoN
2A/l, and replace I with what we just found:

U = 1
2
LI2 = 1

2
(µoN2A

l
)( Bl

µoN
)2

After expanding and cancelling common terms, we end up with: U = 1
2
AB2l
µo

.

(A)(l) is just the volume of the solenoid, so this is: U = (1
2
B2

µo
)× (volume).

If we divide both sides by the volume, the left hand side becomes (U)/(volume) which is usually

written with a lower-case u and represents the energy density (J/m3) so we’ve arrived at u = 1
2
B2

µo
.

This gives us a short-cut now. If we know the strength of the magnetic field, we know the energy
density present, so all we need to do is multiply by the volume involved.

Here, B = 0.6 T so u = 1
2

(0.6)2

4π×10−7 = 143, 240 J/m3.

The volume contained in the solenoid is (volume) = (A)(l) = πr2l = π(0.0105 m)2(0.38 m) =
1.316×10−4 m3 so the actual energy would be U = (u)(V ) = (143240 J/m3)(1.316×10−4 m3) = 18.9 J .

(As a check, we can redo part of the previous problem. In that case, where we had the same physical
dimensions but also knew the current and the number of turns of the wire, we found that B = 0.33 T ,

which leads to an energy density u = 1
2
B2

µo
= 1

2
(0.33)2

4π×10−7 = 43, 433 J/m3. Multiplying by the volume we

just found yields U = 5.72 J (same as we found before).



Inductive Charging : Loop of wire near a current
(a) A long straight wire and a small rectangular wire loop lie in
the same plane. Determine the mutual inductance in terms of
l1, l2, and w. (Assume the wire with the main current I is very
long compared to the other dimensions given.) Warning : bad
choice of symbols here; don’t confuse w with ω that will appear
later.
The text in the ‘assume...’ part means that we can say that the
magnetic field created by the long current-carrying wire will be
B = µoI

2πr
.

The magnetic flux through the loop then will be: ΦB =
∫
B⃗ ·dA⃗.

The current is flowing in the direction shown, so the magnetic
field vectors in the loop will be going into the page. Let’s choose
the A⃗ direction to also be into the page.

Choosing a coordinate system with X horizontally to the right and Y parallel to the current and
pointing towards the top of the figure, dA = dx dy so the flux integral becomes:

ΦB = µoI
2π

∫ 1
x
dxdy.

Nothing changes in the Y direction, so the integral in that direction just produces w. The X integral
produces ln(x) evaluated between the two end-points, so ultimately:

ΦB = µoIw
2π

ln(l2/l1), so: ξ = −dΦB/dt = −(µow
2π

ln(l2/l1))dI/dt

But the mutual inductance is defined via ξ = −MdI/dt so we can pick off the result directly:

M = µow
2π

ln(l2/l1) (and if everything is measured in standard metric units (meters, kg, sec, etc) then
M will have units of ‘Henries’)

(b) Inductive chargers can use geometries like this to transfer power into devices like phones. Suppose
the l and w parameters are ‘phone-sized’ (a few centimeters) and the wire is carrying a current of
10 A. What frequency does the current need, to induce 10 volt of EMF in the loop?

Suppose w = 4 cm = 0.04 m, l1 = 0.2 cm = 0.002 m and l2 = 4 cm = 0.04 m. Then M =
µow
2π

ln(l2/l1) =
(4π×10−7)(0.04)

2π
ln(0.04/.002) = 2.4× 10−8 Henries

The induced EMF then will be ξ = −MdI/dt. If the current is varying with some (angular) frequency
ω, then we can write I = Io cos (ωt) and dI/dt = −Ioω sin (ωt) resulting in an induced voltage of
ξ = MIoω sin (ωt).

We want the amplitude of this EMF to be 10 volt and the supply current is Io = 10 A so: 10 =
(2.4× 10−8)(10)(ω) leading to ω = 4.2× 107 s−1.

The ‘regular’ frequency is related to the angular frequency: ω = 2πf so f = ω/(2π) which here would
be f = 6.6× 106 Hz = 6.6 MHz.

Real inductive chargers can have more than one loop (remember, each loop will result in the given
EMF, so if we had 10 loops we’d create 10 times as much EMF in the daughter circuit), or could allow
the same EMF to be created at 10X lower frequency in the supply circuit. (The ‘Qi’ wireless charger
uses a frequency between 110 kHz and 205 kHz, apparently, which is about 30X lower than the one
we derived, but the same EMF could be generated by using a loop with 30 turns, for example.)



L-R circuit : lighting effect

Suppose we want to create an effect where when we turn on a light switch, the light gradually goes
from dark to full brightness over a short time period, instead of coming on abruptly. Let’s say we want
the light to reach 90% of it’s full power after 0.5 sec. Other details we’ll need: suppose the bulb itself
has a resistance of 2 Ω and is connected to a 12 V battery. What inductor (L) do we need to stick in
series with the lightbulb to achieve this effect?

In an L-R circuit, the current flowing will be I(t) = Vo

R
(1 − e−t/τ ) where τ = L/R, with the current

eventually levelling out at I = Vo/R.

Here, the final current flowing would be Ifinal = (12 V )/(2 Ω) = 6 A at which point the light bulb is
putting out a power of P = I2R = (6)2(2) = 72 W (or P = V 2/R = (12)2/(2) = 72 W .

We want the power to be 90% of this value at t = 0.5 sec so we want P = (0.9)(72 W ) = 64.8 W at
that time.

That means we’ll need the current to be: P = I2R so (64.8) = (I)2(2) from which I = 5.692 A at
t = 0.5 s.

I(t) = Vo

R
(1− e−t/τ ) so here we have:

5.692 = 6.0(1− e−t/τ ) = 6− 6e−t/τ where t = 0.5.

Rearranging a bit, we have e−t/τ = (6− 5.692)/6 = 0.05132 and taking the natural log of both sides:
−t/τ = −2.97 or τ = t/2.97 = (0.5)/(2.97) = 0.168 s.

The time constant τ = L/R so here (0.168) = (L)/(2) or L = 0.337 H.



L-C circuits : radio tuning

We found that L-C circuits have a natural oscilla-
tion frequency, an effect that is exploited in radio
frequency tuners. Here, the capacitor is usually a
series of metal plates that are interleaved in such
a way that you can manually alter the effective
area of the plates (see figure).

Suppose that a capacitance C of 1350 pF is needed to tune in an AM radio station operating at
f = 550 kHz.

(a) What must the inductance be in this circuit?

The natural frequency of an L-C circuit is ω = 1/
√
LC where ω = 2πf and we have C so let’s

rearrange to solve for L:

L = 1
ω2C

and we know C = 1350 × 10−12 F and ω = (2)(π)(550, 000 s−1) which leads to
L = 6.21× 10−5 H or L = 62.1 µH.

(b) What capacitance C is needed if we want to tune in to a radio station operating at f = 1600 kHz?

We can solve this independently without even knowing L.

The natural frequency of an L-C circuit is ω = 1/
√
LC so rearranging to solve for C:

C = 1
ω2L

. That means that C is inversely proportional to ω2 or that (C)(ω2) will be constant
(and equal to 1/L). Thus:

(Cnew)(ωnew)
2 = (Cold)(ωold)

2

or Cnew = Cold(
ωold

ωnew
)2

Here then: Cnew = (1350 pF )( 550 kHz
1600 kHz

)2 = 159.5 pF .

The frequency we wanted to listen to went up by a factor of (1600/550) = 2.91 which required
the capacitance to go down by a factor of (2.91)2 = 8.46.

Note that to tune to a higher radio frequency, we needed to (significantly) reduce the capacitance. For
a parallel-plate capacitor, recall we had C = ϵo

A
d
. The plate-separation distance (d) is usually fixed,

so to lower the capacitance, we need to (significantly) reduce the area of the plates. In the context of
the figure, we’d turn the knob counter-clockwise (opposite to the arrow direction shown in the figure)
which would swing the movable plates out from the fixed plates until just a small fraction of their area
overlaps with the fixed plates.

Note also that the frequency varies with 1/C2 but C varies linearly with the overlapping area (which
in turn varies linearly with the angle we turn the knob) so the frequencies on the AM dial are pretty
significantly non-linear. (This is true for FM also, but the range of frequencies represented by the FM
band is much narrower, so the effect on the ‘dial’ is less noticeable.)


