Useful Constants

beed of light $c = 2.998 \times 10^8 m/s$	Common Prefixes		
basic unit of charge $e = 1.602 \times 10^{-19} C$	Value	Name	Symbol
mass of electron: $m_e = 9.109 \times 10^{-31} kg$	10^{-12}	pico	р
mass of proton: $m_e = 1.673 \times 10^{-27} \ kg$	10^{-9}	nano	n
$\epsilon_o = 8.854 \times 10^{-12} \ C^2 / (N \ m^2)$	10^{-6}	micro	$\mid \mu$
$k_{o} = \frac{1}{4\pi\epsilon_{o}} = 8.988 \times 10^{9} \ N \ m^{2}/C^{2}$	10^{-3}	milli	m
acc to due gravity (standard) $g = 9.80 \ m/s^2$	10^{-2}	centi	с
Charge densities: $\lambda = Q/length$, $\sigma = Q/area$, $\rho = Q/volume$	10^{3}	kilo	k
Energy units: $1 \ eV = 1.602 \times 10^{-19} \ J$	10^{6}	mega	M

Common Prefixes				
Value	Name	Symbol		
10^{-12}	pico	р		
10^{-9}	nano	n		
10^{-6}	micro	μ		
10^{-3}	milli	m		
10^{-2}	centi	с		
10^{3}	kilo	k		
10^{6}	mega	М		

Random Physics 1 equations: $\Sigma \vec{F} = m\vec{a}$

If constant acc: $x(t) = x_o + v_{ox}t + \frac{1}{2}a_xt^2 || v_x(t) = v_{ox} + a_xt || v_x^2 = v_{ox}^2 + 2a_x\Delta x$ Work/Energy: $W_{a \ to \ b} = \int_{a}^{b} \vec{F} \cdot d\vec{l} \mid K_{b} = K_{a} + \Sigma W \text{ or } (K_{b} + U_{b}) = (K_{a} + U_{a}) + \Sigma W_{other} \mid K = \frac{1}{2}mv^{2}$ Uniform circular motion: $a_{c} = v^{2}/r \mid Period: T = 2\pi r/v$

Coulomb's Law: $F = k|q_1q_2|/r^2$. Like charges repel; opposites attract.

Flux: $\Phi_E = \vec{E} \cdot \vec{A} = \int \vec{E} \cdot d\vec{A}$ Gauss's Law: $\oint \vec{E} \cdot d\vec{A} = Q_{encl}/\epsilon_o$

Electric field: $\vec{E} = \vec{F}/q_o$. \vec{E} points out from positive charges, in towards negative charges. Potential Energy: $U_E = -q \int \vec{E} \cdot d\vec{l} = qV$. Point charges: $U = kq_1q_2/r$ Potential: $\Delta V = V_{ba} = V_b - V_a = \frac{\Delta U}{q} = -\int_a^b \vec{E} \cdot d\vec{l}$ || $\vec{E} = -\vec{\nabla}V = -\frac{\partial V}{\partial x}\hat{i} - \frac{\partial V}{\partial y}\hat{j} - \frac{\partial V}{\partial z}\hat{k}$ Series of point charges: $V = \Sigma V_i = k\Sigma \frac{q_i}{r_i}$ Extended object: $V = \int dV = k \int \frac{dq}{r}$ ring of radius a, along line \perp to plane of ring: $V = kq/\sqrt{x^2 + a^2}$ || Sphere: V = kQ/r $(r \ge R)$ disk of radius R, along line \perp to plane of disk: $V = \frac{2kQ}{R^2}(\sqrt{x^2 + R^2} - x)$

Charge Distribution	Point of interest	Electric field
point charge Q	distance r from Q	$E = kQ/r^2$
		$\vec{E} = \frac{kQ}{r^2}\hat{r}$
conducting sphere	outside $(r > R)$	$E = kQ/r^2$
	inside $(r < R)$	E = 0
nonconducting sphere	outside	$E = kQ/r^2$
infinite wire	distance r from wire	$E = \lambda / (2\pi\epsilon_o r)$
conducting cylinder	outside	$E = \lambda / (2\pi\epsilon_o r)$
	inside	E = 0
infinite sheet	any point	$E = \sigma / (2\epsilon_o)$
pair of sheets of opposite charge	between plates	$E = \sigma / \epsilon_o$
line segment $a = L/2$	along axis \perp to midpoint	$E = kQ/(x\sqrt{x^2 + a^2})$
line segment $a = L/2$	along axis \perp to midpoint	$E = 2k\lambda/(x\sqrt{(x/a)^2 + 1})$
ring of radius a	along axis \perp to ring center	$E = kQx/(x^2 + a^2)^{3/2}$
charged disk radius R	along axis \perp to disk center	$E = \frac{\sigma}{2\epsilon_o} \left(1 - \frac{1}{\sqrt{(R^2/x^2) + 1}} \right)$

Circumference, Area, Volume of various common geometric shapes: <u>circle</u>: $C = 2\pi r$, $A = \pi r^2$ <u>sphere</u>: $C = 2\pi r$, $A = 4\pi r^2$, $V = \frac{4}{3}\pi r^3$ <u>cylinder</u>: $A = 2\pi rh$, $V = \pi r^2h$ Quadratic equation If $Ax^2 + Bx + C = 0$ then $x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$