Useful Constants

		Common Powers of 19		
speed of light $c = 2.998 \times 10^{\circ} m/s$ basic upit of charge $c = 1.602 \times 10^{-19} C$	Value	Name	Prefix	
gravitational constant $G = 6.674 \times 10^{-11} N m^2/ka^2$	10^{-12}	pico	р	
mass of electron: $m_c = 9.109 \times 10^{-31} kg$	10^{-9}	nano	n	
$\epsilon_o = 8.854 \times 10^{-12} \ C^2 / (N \ m^2)$	10^{-6}	micro	μ	
$\epsilon_{o} = 8.854 \ pF/m$	10^{-3}	milli	m	
$k = \frac{1}{4} = 8.988 \times 10^9 \ N \ m^2/C^2$	10^{-2}	centi	с	
acc to due gravity (standard) $a = 9.807 \ m/s^2$	10^{-1}	deci	d	
Sun: $mass = 1.99 \times 10^{30} ka$, $radius = 6.96 \times 10^8 m$	10^{3}	kilo	k	
Earth: $mass = 5.97 \times 10^{24} ka$, $radius = 6.38 \times 10^6 m$	106	mega	Μ	
Charge densities: $\lambda = Q/length$, $\sigma = Q/area$, $\rho = Q/volume$	10^9	giga	G	

Random Physics 1 equations: $\Sigma \vec{F} = m\vec{a}$ If constant acc: $x(t) = x_o + v_{ox}t + \frac{1}{2}a_xt^2 \quad || \quad v_x(t) = v_{ox} + a_xt \quad || \quad v_x^2 = v_{ox}^2 + 2a_x\Delta x$ Work and Energy: $W_{a\ to\ b} = \int_a^b \vec{F} \cdot d\vec{l} \quad || \quad K_b = K_a + \Sigma W \text{ or } (K_b + U_b) = (K_a + U_a) + \Sigma W_{other}$ $K = \frac{1}{2}mv^2 \quad || \quad \text{Uniform circular motion:} \quad a_c = v^2/r \quad || \quad \text{Period:} \quad T = 2\pi r/v$

Coulomb's Law: $F = k|q_1q_2|/r^2$. Matching signs repel; different signs attract.

Flux: $\Phi_E = \int \vec{E} \cdot d\vec{A}$. Gauss's Law: $\Phi_E = Q_{encl}/\epsilon_o$ when flux integrated over a closed surface.

Electric field: $\vec{E} = \vec{F}/q_o$. \vec{E} points out from positive charges, in towards negative charges.

Charge Distribution	Point of interest	Electric field
point charge Q	distance r from Q	$E = kQ/r^2$
conducting sphere	outside $(r > R)$	$E = kQ/r^2$
	inside $(r < R)$	E = 0
nonconducting sphere	outside	$E = kQ/r^2$
infinite wire	distance r from wire	$E = \lambda / (2\pi\epsilon_o r)$
conducting cylinder	outside	$E = \lambda / (2\pi\epsilon_o r)$
	inside	E = 0
infinite sheet	any point	$E = \sigma / (2\epsilon_o)$
pair of sheets of opposite charge	between plates	$E = \sigma / \epsilon_o$
line segment $a = L/2$	along axis \perp to midpoint	$E = kQ/(x\sqrt{x^2 + a^2})$
line segment $a = L/2$	along axis \perp to midpoint	$E = 2k\lambda/(x\sqrt{(x/a)^2 + 1})$
ring of radius a	along axis \perp to ring center	$E = kQx/(x^2 + a^2)^{3/2}$
charged disk radius R	along axis \perp to disk center	$E = \frac{\sigma}{2\epsilon_o} \left(1 - \frac{1}{\sqrt{(R^2/x^2) + 1}}\right)$

Geometry:

circle: $C = 2\pi r, A = \pi r^2$ sphere: $C = 2\pi r$, $A = 4\pi r^2$, $V = \frac{4}{3}\pi r^3$ cylinder: $A = 2\pi rh$, $V = \pi r^2h$

Common Integrals: $\int x^n dx = \frac{x^{n+1}}{n+1} \text{ for } n \neq -1$ $\int_{1}^{\infty} \frac{1}{x} dx = ln(x)$ $\int_{1}^{\infty} e^{ax} dx = \frac{1}{a} e^{ax}$ (If you need others I will look them up.)

Potential energy and Potential

$$\begin{split} V &= U/q_o \text{ or } U = q_o V \\ 2 \text{ point charges (or equiv): } U &= kqq_o/r \qquad V = kq/r \\ \text{n point charges (or equiv): } U &= kq_o \sum \frac{q_i}{r_i} \qquad V = k \sum \frac{q_i}{r_i} \\ \text{distribution: } U &= kq_o \int \frac{dq}{r} \qquad V = k \int \frac{dq}{r} \\ \text{infinite line of charge: } V &= \frac{\lambda}{2\pi\epsilon_o} ln(\frac{r_o}{r}) \\ \text{cylinder of charge (radius R): } V &= \frac{\lambda}{2\pi\epsilon_o} ln(\frac{R}{r}) \text{ (for } r > R) \\ \text{ring of radius } a \text{, along line } \bot \text{ to plane of ring: } V &= kq/\sqrt{x^2 + a^2} \end{split}$$

Capacitance

C = Q/Vparallel plates: $C_o = \epsilon_o A/d$ spherical capacitor: $C_o = 4\pi\epsilon_o \frac{r_a r_b}{r_b - r_a}$ cylindrical capacitor: $C_o = 2\pi\epsilon_o L/\ln(r_b/r_a)$ series: $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots$ parallel: $C = C_1 + C_2 + \cdots$ energy stored: $U = \frac{Q^2}{2C} = \frac{1}{2}CV^2 = \frac{1}{2}QV$ energy density: $u = \frac{1}{2}\epsilon_o E^2$ dielectrics: $C = C_o K$ $E = E_o/K$

Kirchhoff: Junction (node) rule: $\Sigma I_{in} = \Sigma I_{out}$

e) rule: $\Sigma I_{in} = \Sigma I_{out}$ Loop rule

RC circuits: $\tau = RC$ charging: $Q = C\xi(1 - e^{-t/\tau})$ $I = dQ/dt = \frac{\xi}{R}e^{-t/\tau}$ $V_C = Q/C = \xi(1 - e^{-t/\tau})$ discharging: $Q = Q_o e^{-t/\tau}$ $I = dQ/dt = I_o e^{-t/\tau}$ $V_C = Q/C = V_o e^{-t/\tau}$

Dielectric Constants (at $20^{\circ}C$)				
	Dielectric	Dielectric		
	$\operatorname{constant}$	strength		
Material	K	(V/m)		
Vacuum	1.0000			
Air (1 atm)	1.0006	3×10^6		
Paraffin	2.2	10×10^6		
Polystyrene	2.6	24×10^6		
Vinyl (plastic)	2 to 4	50×10^6		
Paper	3.7	15×10^6		
Quartz	4.3	8×10^6		
Oil	4	12×10^6		
Glass, pyrex	5	14×10^6		
Porcelain	6 to 8	5×10^6		
Mica	7	150×10^6		
Water (liquid)	80	150×10^6		

Resistivity and Temperature Coefficients				
$\rho = \rho_o [1 + \alpha (T - T_o)]$ where $T_o = 20^{\circ} C$				
Material	$\rho_o \ (\Omega \cdot m)$	$\alpha (^{o}C)^{-1}$		
Conductors				
Silver	1.59×10^{-8}	0.0061		
Copper	1.68×10^{-8}	0.0068		
Gold	2.44×10^{-8}	0.0034		
Aluminum	2.65×10^{-8}	0.00429		
Tungsten	5.60×10^{-8}	0.0045		
Iron	9.71×10^{-8}	0.00651		
Platinum	10.60×10^{-8}	0.003927		
Mercury	98.00×10^{-8}	0.0009		
Nichrome	100.00×10^{-8}	0.0004		
Insulators				
Glass	10^9 to 10^{12}			
Hard rubber	10^{13} to 10^{15}			

Current, Resistance... $I = dQ/dt = n|q|v_dA$ temperature variation: $\rho = \rho_o[1 + \alpha(T - T_o)]$ Ohm's law: $V_{ba} = IR$ where $R = \rho L/A$ parallel: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$ series: $R = R_1 + R_2 + \cdots$ EMF ξ : ideal output of source
battery internal resistance: $V_{ba} = \xi - Ir$ Power: $P = V_{ba}I = I^2R = V_{ba}^2/R$ AC: $V = V_o \sin(\omega t)$ $I = I_o \sin(\omega t)$ $P_{avg} = I_{rms}V_{rms} = I_{rms}^2R = V_{rms}^2/R$ $I_{rms} = \frac{1}{\sqrt{2}}I_o$ $V_{rms} = \frac{1}{\sqrt{2}}V_o$

Loop rule: $\Sigma \Delta V = 0$