Useful Constants

speed of light $c = 2.998 \times 10^8 m/s$ basic unit of charge $e = 1.602 \times 10^{-19} C$ $\begin{aligned} \epsilon_o &= 8.854 \times 10^{-12} \ C^2 / (N \ m^2) = 8.854 \ pF/m \\ k &= \frac{1}{4\pi\epsilon_o} = 8.988 \times 10^9 \ N \ m^2/C^2 \end{aligned}$ $\mu_o = 4\pi \times 10^{-7} T \ m/A$ acc to due gravity (standard) $q = 9.80 \ m/s^2$ Energy units: 1 $eV = 1.602 \times 10^{-19} J$

Geometry:

circle: $C = 2\pi r, A = \pi r^2$ sphere: $C = 2\pi r, A = 4\pi r^2, V = \frac{4}{3}\pi r^3$ cylinder: $A = 2\pi rh$, $V = \pi r^2 h$

Capacitance

C = Q/Vparallel plates: $C_o = \epsilon_o A/d$ spherical capacitor: $C_o = 4\pi\epsilon_o \frac{r_a r_b}{r_b - r_a}$ cylindrical capacitor: $C_o = 2\pi \epsilon_o l/ln(r_b/r_a)$ series: $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots$ parallel: $C = C_1 + C_2 + \cdots$ energy stored: $U = \frac{\tilde{Q}^2}{2C} = \frac{1}{2}CV^2 = \frac{1}{2}QV$ energy density: $u = \frac{1}{2}\epsilon_o E^2$ dielectrics: $C = C_o K$ $E = E_o/K$ **Kirchhoff**

$$\Sigma I_{in} = \Sigma I_{out} \qquad \Sigma \Delta V = 0$$

Common Prefixes Name Symbol Value 10^{-12} pico р 10^{-9} nano n 10^{-6} micro μ 10^{-3} milli m 10^{-2} centi с 10^{3} kilo k 10^{6} М mega 10^{9} giga G 10^{12} Т tera

Common Integrals: $\int x^n dx = \frac{x^{n+1}}{n+1}$ for $n \neq -1$ $\int \frac{1}{x} dx = \ln(x)$ $\int e^{ax} dx = \frac{1}{a} e^{ax}$

Current, Resistance...

 $J = I/A = n|q|v_d$ $I = dQ/dt = n|q|v_dA$ resistivity: $\rho = E/J$ temperature variation: $\rho = \rho_o [1 + \alpha (T - T_o)]$ Ohm's law: $V_{ab} = IR$ where $R = \rho l/A$ parallel: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$ series: $R = R_1 + R_2 + \cdots$ EMF ξ : ideal output of source battery internal resistance: $V_{ab} = \xi - Ir$ Power: $P = V_{ab}I = I^2 R = V_{ab}^2/R$ AC: $V = V_o \sin(\omega t)$ $I = I_o \sin(\omega t)$ $P_{avg} = I_{rms} V_{rms} = I_{rms}^2 R = V_{rms}^2 / R$ $V_{rms} = \frac{1}{\sqrt{2}} V_o \qquad I_{rms} = \frac{1}{\sqrt{2}} I_o$

RC circuits:
$$\tau = RC$$

charging: $Q = C\xi(1 - e^{-t/\tau})$ $I = +dQ/dt = \frac{\xi}{R}e^{-t/\tau}$ $V_C = \xi(1 - e^{-t/\tau})$
discharging: $Q = Q_o e^{-t/\tau}$ $I = -dQ/dt = I_o e^{-t/\tau}$ $V_C = Q/C = V_o e^{-t/\tau}$

1 Tesla = 10,000 Gauss $B_{earth} \approx 0.5 \ G \ (\text{more or less to the north})$

Force: $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$ Ampere's law: $\oint \vec{B} \cdot d\vec{l} = \mu_o I_{encl}$ Long wire: $B = \frac{\mu_o}{2\pi} \frac{I}{r}$ Long wire: $\vec{F} = I\vec{l} \times \vec{B}$ Segment: $d\vec{F} = Id\vec{l} \times \vec{B}$ Interior of a solenoid: $B = \mu_o I \frac{N}{I}$ Cyclotron: $r = \frac{mv}{qB}$ $f = (qB)/(2\pi m)$ Center of circular loop: $B = \frac{\mu_o I}{2\pi r}$ Biot-Savart : $\vec{B} = \frac{\mu_o I}{4\pi} \int \frac{d\vec{l} \times \hat{r}}{r^2}$ 2 parallel currents: $F/l = \frac{\mu_o}{2\pi} \frac{I_1 I_2}{d}$

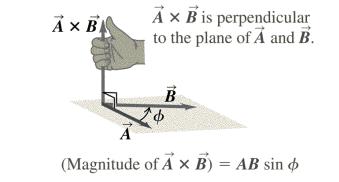
Magnetic flux: $\Phi_B = \int \vec{B} \cdot d\vec{A}$ Faraday's law: $\xi = -N \frac{d\Phi_B}{dt}$ (or $\xi_{avg} \approx -N \Delta \Phi_B / \Delta t$)

Lenz's law: a current produced by an induced EMF moves in a direction so that the magnetic field created by that current opposes the original change in flux

Rotating coil: $\xi = NBA\omega \sin(\omega t) = \xi_0 \sin(\omega t)$ Moving conductor: $|\xi| = Blv$ (A/C) Transformer: $V_s = N_s d\Phi_B/dt$ $V_p = N_p d\Phi_B/dt$ so $V_s = V_p * (N_s/N_p)$ Assuming nearly 100% efficiency, $P_p = P_s$ so P = IV implies: $I_s = I_p * (N_p/N_s)$ Mutual inductance: $\xi_2 = -M dI_1/dt; M = M_{21} = N_2 \Phi_{21}/I_1$ Two concentric solenoids: $M = \mu_o N_1 N_2 A/l$ Rectangular loop near long wire: $M = \frac{\mu_o N l}{2\pi} ln(r_2/r_1)$ Self inductance: $\xi = -LdI/dt$; $L = N\Phi_B/I$ single solenoid: $L = \mu_o N^2 A/l$ coaxial cable: $L = \frac{\mu_o l}{2\pi} ln(r_2/r_1)$ circular loop of radius R and wire radius r: $L \approx N^2 \mu_o R[ln(\frac{8R}{r}) - 2]$ Energy stored: $U = \frac{1}{2}LI^2$; energy density: $u = \frac{1}{2}\frac{B^2}{\mu_0}$ L-R circuit (charging) : $I = \frac{V_o}{R}(1 - e^{-t/\tau})$, where $\tau = L/R$ L-R circuit (discharging) : $I = I_o e^{-t/\tau}$, with $I_o = V_o/R$ L-C circuit (oscillating) : $Q(t) = Q_o \cos(\omega t + \phi), I = -dQ/dt = I_o \sin(\omega t + \phi)$, with $I_o = \omega Q_o$ where $\omega = 2\pi f = 1/\sqrt{LC}$. AC (single element) with applied $V = V_o \cos(\omega t)$ Resistor: $I_o = V_o/R$ $I(t) = I_o \cos(\omega t)$ Inductor: $I_o = V_o/X_L$ Capacitor: $I_o = V_o/X_C$ $X_L = \omega L$ $X_C = 1/(\omega C)$ $I(t) = I_o \cos(\omega t - 90^o)$ $I(t) = I_o \cos(\omega t + 90^o)$ R-L-C with common $I = I_o \cos(\omega t)$ overall $V(t) = V_o \cos(\omega t + \phi)$ with $V_o = I_o Z$ where: $Z = \sqrt{R^2 + (X_L - X_C)^2}$ $\tan \phi = (X_L - X_C)/R$ resistor: $V_R = I_o R$ inductor : $V_L = I_o X_L$ capacitor: $V_C = I_o X_C$ $P_{avg} = V_{rms} I_{rms} \cos \phi$ Resonant frequency: $\omega_o = \frac{1}{\sqrt{LC}}$

Cross Products

 $\vec{C} = \vec{A} \times \vec{B}$ magnitude: $C = AB \sin \phi$ direction: RHR from A to B. $C_x = A_y B_z - A_z B_y$ $C_y = A_z B_x - A_x B_z$ $C_z = A_x B_y - A_y B_x$ $\vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$



Be familiar with the various right-hand rules involved in magnetism. Review the **rhr.pdf** file on Canvas. These will NOT be provided during the test.