Test 1 Practice : Additional Good Homework Problems
(updated to include chapter 23)

Chapter 21 : Electric Charge and Electric Field

e HW 21-75 : Dry air will break down and generate a spark if the electric field exceeds about
3 x 105 N/C. How much charge could be packed onto the surface of a small green pea (treat as a
sphere of diameter 0.75 e¢m, with the charge uniformly distributed) before the pea spontaneously
discharges?

e HW 21-16 : Two negative and two positive point
charges (of magnitude |Q| = 4.15 mC') are placed
on opposite corners of a square as shown in the
figure. Determine the magnitude and direction of
the force on each charge.

—4.15 mC 0.100 m 4.15 mC
: ®

0.100 m 0.100 m

(Think about this a bit. All the charges have the
same magnitude, so there aren’t that many actual ®
calculations required here. Pick one and look at 4.15 mC 0.100 m —4.15 mC
the forces the others are exerting on it. We have

some symmetries we can exploit here.)

e HW 21-18 : A large electroscope is made with
‘leaves’ that are 78 cm long wires with tiny 24 g
spheres at the ends. When a charge Q) is added
to the point on the top, the charge redistributes
itself leaving ()/2 on each sphere. At equilibrium, 78 cm
the wires each make an angle of 26° relative to the
vertical. How much total charge () was applied to
the electroscope?
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e HW 21-33 : Calculate the (vector) electric field at the center of a square 42.5 ¢m along each side if
one corner is occupied by a —33.8 uC' charge and the other three corners are occupied by —22.0 uC
charges? (Hint: be sure to sketch this out and think about it before bringing in any equations. The
actual calculation part for this problem will be almost negligible.)



e HW 21-82 : A point charge (m = 1.5 gram) at
the end of an insulating cord of length 55 c¢m is
observed to be in equilibrium in a uniform hori-
zontal electric field of 9500 N/C when the pen-
dulum’s position is as shown in the figure, with
the charge 12 ¢m above its lowest (vertical) po-
sition. If the field points to the right, determine —
the magnitude and sign of the point charge. E

(Remember the pith-ball example we worked in
class. What are the three forces acting on the
charged ball? How do we determine the angle 6
using the distances they provided?) S




’Chapter 22 : Gauss’s Law

(The first few are just conceptual problems and not really test problems, but they’re good practice for
understanding what Gauss’s Law means.)

e HW 22-10 : A point charge Q is placed at the exact center of a cube with sides of length [. What
is the flux through one face of the cube?

(Don’t actually do any integrals here - what symmetry can we exploit here? Remember the total
flux through all the sides combined is equal to Q/¢, via Gauss’s Law...)

e HW 22-11 : A 25 c¢m long uniformly charged plastic rod is sealed inside a plastic bag. The total
electric flux passing through the bag is 7.3 x 10° N m?/C. What is the linear charge density on
the rod?

(Another one to think about first. Way easier than it looks.)

e HW 22-28 : A spherical rubber balloon carries a total charge of Q uniformly distributed on its
surface. At ¢t = 0 the conducting balloon has a radius of r, and the balloon is then slowly blown
up so that r increases to 27, in a time 7. Determine the electric field as a function of time (a) just
outside the expanding balloon’s surface and (b) at the fixed point at r = 3.2r,.

(Again, this is a thinking problem - no calculations will be needed. The answer should be ‘obvious’...)

e HW 22-65 : A conducting spherical shell has an
inner radius of 10 ¢m, an outer radius of 15 cm,
and has a +3 pC point charge Q located at its
center. An additional charge of —3 uC' is now
added to the spherical shell. (a) Where on the
conductor does that —3 uC' charge end up? (b) Q0 150¢
After we've added the additional charge to the
shell, what is the electric field both inside and
outside the shell (i.e. what does E look like as a
function of r)?

0.0 cm



e Inspired by HW 22-63, but slightly simpler. This is mostly a thought problem too, but is expecting
numerical results. We walked through this in class Friday. Since you won’t need to derive
any electric fields using Gauss’s Law on the test, you can skip this problem and the
next one as far as test practice, but it’s an interesting problem that will definitely
exercise your understanding of conductors and how Gauss’s Law works!

Suppose we have a very large metal slab that’s o
2 c¢m thick and initially electrically neutral. 5 cm 2
ABOVE this metal slab (and parallel to it) we ﬁé‘;gﬁg;__
. . THIN -
place a very large, but very thin non-conducting SHEST
sheet that has a (uniform) charge density of o = - b -
+5.00 uC'/m2. | Vit
Use Gauss’s Law to determine the charge density N2 -
Enl . vy
that must be on the top surface of the metal slab. Y MERL MR TS C C “ ///'{‘_/
That same charge density (but of opposite sign) [___..-, " . d ’Z\_
will be on the bottom surface of the metal slab. £ATOM

What will the resulting electric fields be (magnitude and direction) at the points labelled in the
figure?

— Point (a) is just above the non-conducting sheet
— Point (b) is anywhere between the sheet and the slab

— Point (¢) is inside the metal slab
— Point (d) is below the metal slab

(They take pains to describe these as ‘very large’, so assume they’re in effect infinitely large.
Symmetry arguments restrict what E can be. For example, it can’t have any ‘lateral’ component
anywhere: E has to be perpendicular to the surfaces. It also can’t change as we move to the left or
right in the figure, and so on. How did we use Gauss’s Law in these infinite-sheet type geometries
before? The slab is a conductor, so what must be the electric field at point (c) in the figure? Where
could we put a little Gaussian cylinder (hint) that would let us use the given o on the sheet to find
the o on the top surface of the slab?)

e HW 22-34 : A very long solid nonconducting

cylinder of radius R, and length [ (where [ is very a i e
much larger than R,, so assume it’s infinitely long) R
has a uniform volume charge density of p through- :‘\'?‘ dLoE L L L b

out the material making up the cylinder. Use
Gauss’s Law to derive an equation for the elec- -y

tric field outside (r > R,) and inside ( r < R, ) +/ 4+ + + + + +
the cylinder. L

(Safe to skip since you won’t be deriving E fields using Gauss’s Law on the test...)



Chapter 23 : Electric Potential

As usual, a couple of easy warm-up questions:

e HW 23-03 : What potential difference is needed to stop an electron that has an initial velocity of
v =>5.2x10° m/s? (Sketch out the scenario : if the electron is travelling from the left to the right,
which ‘side’ of the figure has the higher voltage and which has the lower voltage?)

e HW 23-05 : An electron accelerates from rest in a uniform electric field of E = 6000 N/C to a
speed of 20,000 m/s. (a) How far did it travel? (b) Through what potential difference was the
electron accelerated?

e HW 23-12 : What minimum radius must a large conducting sphere have if it is to be at 45,000 V
without discharging into the air? How much charge will it be carrying?

+0® -20

e HW 23-28 : Three point charges are arranged at
the corners of a square of side [ as shown in the
figure. What is the potential at the fourth corner
(point A in the figure), taking V' = 0 when we’re { {
infinitely far away from these charges?
(Obviously this will be a symbolic answer involv-

ing @ and [.)
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e HW 23-37 : A 12.0 ¢m radius thin ring carries a uniformly distributed +15.0 u C' charge. A small
7.5 gram sphere with a charge of +3.6 uC' is placed exactly at the center of the ring and given a
very small push so it moves along the ring axis. How fast will the sphere be moving when it is 2 m
from the center of the ring (ignore gravity)?

(Think of this in terms of conservation of energy. The electrical potential energy of the sphere at
each location will be it’s charge times the voltage being created by the ring at that point. The ‘very
small push” wording means assume the initial velocity of the sphere is so small we can assume it’s
essentially zero.)



e HW 23-80 : Three point charges are arranged as
shown in the figure. A —1.8 uC' charge is located b
at point A, with a 438 uC' charge located 12 cm
to its left, and another +38 puC' charge located

24 em to its right. The 438 uC' charges are fixed -
in place and cannot move. 33 MC.lz cm 24 cm 033 uC
How much work is required to move the —1.8 uC' I a

charge from point A to point B?

(Hint: look at the change in electrical potential energy between the two locations. The positive
charges aren’t moving, so focus on just the U of the negative charge at points A and B.)

e HW 23-52 : A dust particle with mass of 0.050 grams and a charge of +2.0 x 107% C'is in a region
of space where the potential is given by V(z) = (2.0 V/m?)z* — (3.0 V/m?)2® (where z is measured
in meters). If the particle starts at © = 2.5 m, what is the initial acceleration of the charge?

(The force on the dust particle will be F' = ¢F and how can we find the electric field from the
potential? Note: we won’t get to this relationship until the last lecture on this chapter...)



