
Physics 2233 : Chapter 33 Examples : Lenses and Optical Instruments

NOTE: these examples are mostly from our previous book, which used different symbols for the
object and image distances. I’ve tried to track them all down, but just in case I missed any:

Symbol Conventions
Variable Current book Old Book
Object Distance do s
Image Distance di s′

Focal distance f f
Object size ho y
Image size hi y′

Corresponding Equations

Lens Equation 1
do

+ 1
di

= 1
f

1
s
+ 1

s′
= 1

f

Magnification m = hi/ho = −di/do m = y′/y = −s′/s

inverted image m < 0 ⇒ hi < 0 m < 0 ⇒ y′ < 0

Thin Spherical Lenses

See problems 24 and 34 for sample ray diagrams. See book page 963 for ‘sign rules’.

Lensmaker’s equation : n is the index of refraction of the lens

in air : 1
f
= (n− 1)( 1

R1
+ 1

R2
)

in other medium of index of refraction no : 1
f
= n−no

no
( 1
R1

+ 1
R2
)

Converging Lens (thicker in the middle)

Diverging Lens (thinner in the middle)

Human Eye

‘normal eye’ : near-point of 25 cm, far-point at infinity

‘nearsighted’ : far-point closer in (corrected with diverging lens)

‘farsighted’ : near-point farther out (corrected with converging lens)

Magnifiers (converging lens) M = θ′

θ

Eye relaxed (i.e. focused at ∞) : M = N/f where N is the near-point distance

Eye focused at near point: M = N
f
+ 1



Example 23 : An insect 3.75 mm tall is placed 22.50 cm to the left of a thin planoconvex lens.
The left surface of this lens is flat, the right surface has a radius of curvature of magnitude 13.0 cm,
and the index of refraction of the lens material is 1.70. (a) Calculate the location and size of the
image this lens forms of the insect. Is it real or virtual? Upright or inverted? (b) Repeat part (a)
if the lens is reversed.

(Planoconvex: one side is flat, the other side bulges out in the middle.)

(a) Our labeling scheme is that the ‘1’ surface is the one that the light rays hit first, so here R1

is infinity. (A flat surface is basically a spherical surface in the limit of infinitely large radius of
curvature.)

On the right side, the center of curvature is out to the left of the lens. This book uses a convention
such that the radii for a double-convex lens (bulging out on both sides) are both positive, so here
R2 = +13.0 cm.

The object is on the left of this lens (same side as the rays incoming to the lens) so do = +22.50 cm.

We can use the Lensmaker’s equation to compute the focal distance for this lens: 1
f
= (n− 1)( 1

R1
+

1
R2
) = (1.70− 1.00)(0 + 1

+13 cm
) = (0.70)/(+13 cm) from which f = (13.0 cm)/0.7 = 18.6 cm. This

is positive so this is a converging lens.

We can now find the image distance: 1
do

+ 1
di

= 1
f
or 1

di
= 1

f
− 1

do
. Putting the right side over a

common denominator: 1
di

= do−f
dof

or rearranging: di =
dof
do−f

= (22.5)(18.6)
22.5−18.6

= 107 cm. (That’s positive,

so the image is on the same side as the outgoing rays, making it a real image.)

The magnification factor will be m = −di/do = −(106)/(22.5) = −4.76. (Negative, so the image
will be inverted.)

Since m = hi/ho also, the size of the image will be hi = mho = (−4.76)(3.75 mm) = −17.8 mm.

Summary: the image will be 17.8 mm tall, inverted, and real.

(b) We now turn the lens around.

Now the curved side is facing the bug so our ‘1’ side is the curved one and the ‘2’ side is the flat
one. The center of curvature of the left side of the lens is to the right which is the ‘right’ side for a
converging lens (the reference lens that this book uses to define signs for the radii) so R1 = +13 cm.
The flat side will have an infinite radius of curvature.

We can use the Lensmaker’s equation again to compute the focal distance for this lens: 1
f
= (n −

1)( 1
R1

+ 1
R2
) = (1.70−1.00)( 1

+13 cm
+0) = (0.70)/(+13 cm) from which f = (13.0 cm)/0.7 = 18.6 cm.

This is exactly the same value we had before, and the object distance is the same, so all of the
other calculations above will proceed without change. The image of the bug, again, will be 17.8 mm
tall, inverted, and real.

This is an important generic result when we have ‘thin lenses’ (whether converging or diverg-
ing). It implies that we can flip the lens the other way around and it will have no effect. (There
will be some effects but the differences are in the higher order terms we ignored when we used the
thin lens / small angle approximation to derive the lens-related equations.)



Example 24 : A lens forms an image of an object. The object is 16.0 cm from the lens. The image
is 12.0 cm from the lens on the same side as the object. (a) What is the focal length of the lens?
Is the lens converging or diverging? (b) If the object is 8.5 mm tall, how tall is the image? Is it
upright or inverted? (c) Draw a principal ray diagram.

A converging lens will have f > 0 so that rays coming from infinitely far away from one side will
get focused on the other side. Conversely, a diverging lens will have f < 0. So from the sign of f ,
we can determine the type of lens.

(a) Here we have the image and object distances. The object is 16.0 cm from the lens, so do =
16.0 cm. (If only a single lens is involved, the object will always on the same side as the light rays
coming in towards the lens, so do is always positive, no matter what the configuration - again, as
long as we only have one lens involved.) For the image though, we have the image on the same side
as the object in this case. Lenses don’t turn light around (like a mirror does) so that means the
image is not on the same side as the outgoing rays, so di is negative here: di = −12.0 cm.

For a lens: 1
do
+ 1

di
= 1

f
. Putting the left hand side over a common denominator: do+di

dodi
= 1

f
or finally

f = dodi
do+di

. For this particular case: f = (16 cm)(−12 cm)
16 cm+(−12 cm)

= −48.0 cm.

Since f < 0, this must be a diverging lens.

(b) The magnification factor m = −di/do = −(−12)/(16) = +0.750 so the object is shrunk by this
factor. m = hi/ho so hi = mho = (0.750)(8.5 mm) = 6.38 mm. Since m was positive, the image
will be upright.

(c) Principal ray diagram:

Ray 1 : a ray parallel to the axis should be
refracted by the lens so that it goes through
(or appears to have come from) the point F .
From the arrowhead, we start drawing a line
parallel to the axis. It hits the lens at some
point. We now draw a line that goes through
this point and the point F . The part of this
line that is on the outgoing side will be where
the light ray actually goes. The dotted part
leading back to F is where this ray appears
to be coming from.

Ray 2 : A ray from the point through the vertex of the lens just keeps going in a straight line.

Ray 3 : A ray that heads directly towards F ′ (or appears to come from F ′) should become a ray
parallel to the axis. So here we draw a line connecting the top of the arrow to F ′ and where it
intersects the lens, it turns into a line parallel to the axis.

Where these three lines intersect or appear to intersect, that’s where the top of the arrow is in the
image. Based on the sketch, the image is upright, shrunk a bit, and virtual. (And the ray diagram
results appear consistent with the numerical values that were given or calculated.)



Example 30 : Six lenses in air are shown in the figures below. Each lens is made of a material
with index of refraction n > 1. Considering each lens individually, imagine that light enters the
lens from the left. Show that the three lenses in the first figure (a) have positive focal lengths (and
hence are converging lenses). Show that the three lenses in the second figure (b) have negative
focal lengths (and hence are diverging lenses).

In this problem, the object is on the left side, so
in all these lenses, the left will be the ‘1’ side and
the right will be the ‘2’ side, when it comes to
figuring out the signs of R1 and R2. This book
uses the convention that both radii are positive
when the lens is a double-convex type (bulging
outward on both sides). If a center of curvature
for a given face is on the ‘wrong’ side, that radius
will be negative.

Converging lenses ( f > 0 ) : Starting from the Lensmaker’s equation, 1
f
= (n − 1)( 1

R1
+ 1

R2
) if f

is to be positive, then (since n > 1) we can see that 1
R1

+ 1
R2

> 0 (We can’t really go much further
here, since these radii may be negative. 1/4 is smaller than 1/3 but −1/4 is larger than −1/3 (since
‘larger’ means to the right on the number line...) Rather than derive special cases for one or both
of the radii being negative, we’ll just proceed with what we have.)

Diverging lenses ( f < 0 ) : for these lenses (again since n > 1), we see that 1
R1

+ 1
R2

< 0

Ultimately, we need to compare the inverses of the radii of curvature, being careful to account for
the signs of R.

Meniscus: Both C1 and C2 are to the left of this lens, so
R1 < 0 and R2 > 0. Side 1 is ‘flatter’ so the magnitude
of R1 will be larger. |R1| will be larger than |R2| which
means that |1/R1| will be smaller than |1/R2| thus 1

R1
+

1
R2

will be positive, making f > 0 and this must be a
converging lens.

Planoconvex: This is just a special case of the lens we just did, where R1 has increased to be
infinitely large. Now 1/R1 = 0 but R2 is still some positive number, so 1

R1
+ 1

R2
will still be positive,

making f > 0 and this is also a converging lens.

Double convex: This is the ‘reference’ lens as far as our sign conventions go and both radii here
are positive, so automatically 1

R1
+ 1

R2
will be positive, making f > 0 and again this is a converging

lens.

(continued next page)



Meniscus: In this case, the centers of curvature for the
two sides are both to the right of the lens. Side 1 is
‘flatter’ so must have a larger radius of curvature: |R1|
will be larger than |R2| which means that |1/R1| will be
smaller than |1/R2|.
Comparing this to our reference lens, R1 will be positive
and R2 will be negative.
In our expression 1

R1
+ 1

R2
the first term is positive and

the second term is negative but has a larger magnitude,
so the net result will be negative, making f < 0 and thus
this is a diverging lens.

Plano-concave: This is a special case of the lens we just did, where the left side being flat implies
that R1 is infinity, so 1/R1 = 0. R2 is negative, so 1/R2 is also negative, making 1

R1
+ 1

R2
negative,

so ultimately the focal length of this lens will be negative. This will be a diverging lens.

Double concave: The center of curvature for the left face is to the left of the lens and the center
for the right face is to the right. Both of these are on the ‘wrong’ side from our reference lens as
far as signs are concerned, so both R1 and R2 will be negative. Thus 1

R1
+ 1

R2
is negative, and this

lens has a negative focal length, making it a diverging lens.

Example 32 : A converging lens with a focal length of 12.0 cm forms a virtual image 8.00 mm
tall, 17.0 cm to the right of the lens. Determine the position and size of the object itself. Is the
image upright or inverted? Are the object and image on the same side or opposite sides of the lens?
Draw a principal ray diagram for this situation. (Note: way too much set-up thought needed to
work this one; nothing this weird will be on the test without being described better...)

Note that this is a single lens and we have a virtual image; that means the image must be not on
the outgoing ray side, which means that di = −17 cm. They also said this image is on the right side
of the lens, so our figure here is turned around from the way we usually draw them: the outgoing
rays here are heading to the left, so the incoming rays must be on the right-hand side.

So here we have di = −17.0 cm, and f = +12 cm (positive since this is a converging lens).

We can use the object-image relationship to find the object distance do now:
1
do
+ 1

di
= 1

f
. Rearrang-

ing the terms to solve for do (since that’s what we’re looking for here ultimately): 1
do

= 1
f
− 1

di
= di−f

dif

or finally do =
dif
di−f

. For this problem then: do =
(−17.0 cm)(12 cm)
(−17 cm)−(12 cm)

= +7.03 cm. Positive do implies

the object is on the same side as the incoming rays (the rays from the object as they ‘come in’ to
the lens), so it must be on the right side of the lens. (We already knew that from the first paragraph
where we argued that this figure is turned around backwards from the way we usually draw it.)

The magnification of the image is m = −di/do = −(−17 cm)/(7.03 cm) = +2.42. This is positive
so the image is upright. The magnification also relates the sizes of the image and object: m = hi/ho

so ho = hi/m = (8 mm)/2.42 = 3.31 mm.

m was positive, so the image and object have the same orientation.

Using the numbers we got above, we see that the object is positioned inside of the focal length of
this lens. A ray that comes from (or appears to come from) the focus on the right-hand side should



refract into a ray parallel to the axis as it heads off to the left. (So here we draw a line from F’ to
the head of the arrow and then on to the lens, at which point it turns into a line parallel to the
axis. The image of the arrowhead must lie somewhere in the direction defined by that line.

Another ray we can draw is one between the arrowhead and the vertex of the lens. Extending that
line in each direction we can see where this ray intersects the one we just drew, and that’s where
the image of the arrowhead must be. (It’s usually a good idea to draw everything as dotted lines,
or light colored lines initially just to lay out the geometry. Then we can make the lines more solid
to represent the real path that light takes along these rays, and project these lines back if needed
to see where they intersect.



Example 34 : An object is 16.0 cm to the left of a lens. The lens forms an image 36.0 cm to the
right of the lens. (a) What is the focal length of the lens? Is the lens converging or diverging? (b)
If the object is 8.0 mm tall, how tall is the image? Is it upright or inverted? (c) Draw a principal
ray diagram.

For a single lens, the object is (always) on the same side as the rays incoming towards the lens, so
do = 16 cm. The image is over on the same side as the outgoing rays, so di = +36.0 cm.

(a) The focal length can be found easily since 1
do
+ 1

di
= 1

f
. Putting the left hand side over a common

denominator: do+di
dodi

= 1
f
or finally f = dodi

do+di
. For this particular case: f = (16 cm)(36 cm)

16 cm + 36 cm
= 11.1 cm.

This is positive, so the lens is converging.

(b) The magnification factor ism = −di/do = −(36)/(16) = −2.25 so hi = mho = (−2.25)(8.0mm) =
−18.0 mm. The image is 18 mm tall and inverted.

We draw all three of the standard principal rays for lenses here, using the point at the top of the
arrowhead as our object point for which we want to find the corresponding image point. We have
a converging lens, so if the object is on the left side, F will be on the right side and F ′ will be on
the left side of the lens.
Ray 1 : a ray from the object parallel to the axis will go through focal point F . We start drawing
a line parallel to the axis and when the line hits the lens, change its direction so it passes through
F (and extend the line).
Ray 2 : a ray from the object through the vertex will just continue without bending.
Ray 3 : a ray through F ′ (or appearing to come from F ′) will refract at the lens into a line parallel
to the axis. So we put a ruler down between the arrowhead and F ′ and draw a line between those
points, extending it until it hits the lens. At that point, the line refracts into a perfectly horizontal
line parallel to the axis. All three of these lines nominally should intersect at the location of the
image of our point.



Example 40a : An object placed 20 cm to the left of a lens produces a real image 10 cm from
the lens. Determine the focal length and type (converging or diverging) and the magnification of
the lens.

Let’s think about the geometry here. We have the object on the left, the lens in the middle, and a
real image being formed somewhere but is that image on the left or right of the lens? The object is
on the left, so that’s the ‘incoming’ side of the lens, with the right side being where the ‘outgoing’
rays are. The problem states that the image here is real, which means it must be on the ‘outgoing’
ray side, which means for this lens the image must be on the right-hand side of the lens.

We can determine the signs now: do = +20 and di = +10.

Magnification : We can already determine that, since m = −di/do = −(10)/(20) = −0.5 so the
image will be smaller and inverted.

Focal length : 1
do

+ 1
di

= 1
f
which we can rearrange into: f = dodi

do+di
. With the image and object

distances we have here: f = (20)(10)
20+10

= 200/30 = +6.67 cm. This is positive, so this is a converging
lens.

Ray diagram (NOTE: we couldn’t
draw this until we knew what the
focal length was.)
A ray from a point on the object
that heads out parallel to the lens
axis will refract and pass through
the focal point on the other side of
the lens.
A ray through the vertex of the lens
just keeps going in a straight line.
The image of the starting point will
be located at the intersection of the
rays.



Example 40b : An object placed 20 cm to the left of a lens produces a virtual image 10 cm from
the lens. Determine the focal length and type (converging or diverging) and the magnification of
the lens.

Let’s think about the geometry here. We have the object on the left, the lens in the middle, and a
virtual image being formed somewhere but is that image on the left or right of the lens? The object
is on the left, so that’s the ‘incoming’ side of the lens, with the right side being where the ‘outgoing’
rays are. The problem states that the image is virtual, so it must not be on the ‘outgoing’ ray side,
which means the image in this problem must be on the left side of the lens.

We can determine the signs now: do = +20 and di = −10.

Magnification : We can already determine that, since m = −di/do = −(−10)/(20) = +0.5 so the
image will be smaller and upright.

Focal length : 1
do

+ 1
di

= 1
f
which we can rearrange into: f = dodi

do+di
. With the image and object

distances we have here: f = (20)(−10)
20+(−10)

= −200/10 = −20.0 cm. This is negative, so this is a
diverging lens.

Ray diagram (NOTE: we couldn’t
draw this until we knew what the
focal length was.)
A ray parallel to the axis refracts to
appear to have come from F .
A ray through the vertex continues
in a straight line.
Where these intersect (or appear to
be coming from in the case of a di-
verging lens) that’s where the image
of the point is.



Example 40c : An object placed 20 cm to the left of a lens produces a virtual image 30 cm
from the lens. Determine the focal length and type (converging or diverging) and the magnification
of the lens. (Note that compared to the previous problem, the virtual image is further out than
before.)

Let’s think about the geometry here. We have the object on the left, the lens in the middle, and
a virtual image being formed somewhere but is that image on the left or right of the lens? The
object is on the left, so that’s the ‘incoming’ side of the lens, with the right side being where the
‘outgoing’ rays are. The problem states that the image here is virtual, so it must not be on the
‘outgoing’ ray side, which means the image is on the left side of the lens.

We can determine the signs now: do = +20 and di = −30.

Magnification : We can already determine that, since m = −di/do = −(−30)/(20) = +1.5 so the
image will be larger and upright.

Focal length : 1
do

+ 1
di

= 1
f
which we can rearrange into: f = dodi

do+di
. With the image and object

distances we have here: f = (20)(−30)
20+(−30)

= (−600)/(−10) = +60.0 cm. This is positive, so this is a
converging lens.

Ray diagram (NOTE: we couldn’t
draw this until we knew what the
focal length was.)
Converging lens, so we draw a ray
parallel to the axis; it refracts at the
lens and heads towards F on the
outgoing side.
Ray through the vertex continues in
a straight line.
Where these rays appear to be com-
ing from is where the image of the
point is located.



Example 42 : A lens in air has a focal length of 20 cm. If we put this lens under water, describe
the image that it will form if an object is placed 10 cm to the left of this lens. Assume the lens
is made of glass with n = 1.5, the index of refraction of air is essentially n = 1 and the index of
refraction of the water is n = 1.33.

We can determine the focal length of the lens under water from knowledge of it’s focal length in
air.

From the (generic version of the) Lensmaker’s equation, the focal length in air (subscript ‘a’) will
be:

1
fa

= ng−na

na
( 1
R1

+ 1
R2
)

where ng is the index of refraction of the glass lens and na is the index of refraction of the air
(essentially 1).

The focal length under water will be:

1
fw

= ng−nw

nw
( 1
R1

+ 1
R2
)

where ng is the index of refraction of the lens and nw is the index of refraction of the water (1.33).

We don’t know the radii of the two sides of the lens, but don’t need them:

Dividing the first equation by the second:

fw
fa

= ng−na

na
× nw

ng−nw
= 1.5−1

1
× 1.33

1.5−1.33
= (0.5)(7.8235..) = 3.912.

The focal length under water then is 3.912 times the focal length in air, or about fw = (20 cm)(3.912) =
78.2 cm.

IN WATER : the focal length of the lens is 78.2 cm so the image will form at: di = (dof)/(do−f) =
(10)(78.2)/(10 − 78.2) = 782/(−68.2) = −11.5 cm which will be a virtual image. m = −di/do =
−(−11.5)/(10) = +1.15 so the image will be upright and only slightly larger than the object.

What would the image have looked like in air?

IN AIR : if we place an object 10 cm from the lens, it will form an image at di = (dof)/(do− f) =
(10)(20)/(10− 20) = −20 cm so we have a virtual image. m = −di/do = −(−20)/(10) = +2 so the
image will be upright and magnified by a factor of 2.

Note that when used under water, the magnification is much weaker. This is often expressed as
lenses being ‘less effective’ under water. Underwater cameras are often enclosed in water-tight
enclosures so that the lens remains surrounded by air in order to avoid having to deal with this
changing focal length effect.



Example 45a : In a particular camera, the lens is located 2 cm from the film (or image sensor in
the case of a digital camera). This camera perfectly focuses an object that is located 1 m from the
lens.

(a) What is the focal length of this lens?

This is a real image (same side as the ‘outgoing’ rays), so the image distance di = +2 cm. The
object is on the same side as the ‘incoming’ rays, so do = +100 cm.

Focal length: 1
do

+ 1
di

= 1
f
which we can rearrange into: f = dodi

do+di
. With the image and object

distances we have here: f = (100)(2)
100+2

= 200/102 = 1.96078.. cm. This is positive, so this is a
converging lens.

(b) If we point this camera at an object 2 m away, where will the image form?

Image Distance: 1
do

+ 1
di

= 1
f
which we can rearrange into: di =

dof
do−f

. Here, the focal length is still
1.96 cm but the object distance has increased to do = +200 cm so:

di =
(200)(1.96)
200−1.96

= 1.979 cm.

The film/sensor is located 2 cm from the lens though, which means that the image is now forming
slightly in front of the film, missing it by 2 − 1.979 = 0.021 cm or about a fifth of a millimeter.
The rays that exactly converge on this focal point will continue on past there until they reach the
film/sensor, resulting is a (very) slightly blurry image.

(c) If we point this camera at an object infinitely far away, where will the image form?

When do becomes infinity, the image forms at the focal length di = f so in this case the image will
form 1.96 cm from the lens. The film/sensor is 2 cm from the lens, so this image will be about
0.04 cm or two fifths of a millimeter in front of the film. As in (b), the rays continue until they hit
the film, and will now be slightly more out of focus (blurred).

(d) If we point the camera at something 20 cm in front of the lens, where will the image
form?

di =
dof
do−f

= (20)(1.96)
20−1.96

= 2.17 cm which is almost 2 millimeters behind the film or sensor. This image
will be even more blurry than the ones in the previous parts.

The closer the object comes to the lens, the further behind the sensor the image will form, creating
increasingly out-of-focus pictures.

(e) Where do we need to move the lens so that an object exactly 20 cm in front of the lens
will focus perfectly on the sensor?

The lens of some cameras can move in and out, altering the distance from the lens to the film or
sensor, allowing the user to adjust things so that the image distance exactly lands on the sensor.

Here, we have the same physical lens, so f = 1.96 cm still and we have do = 20 cm so where will
this form an image (then we’ll shift the lens so that it’s exactly that distance from the film).

di =
dof
do−f

= (20)(1.96)
20−1.96

= 2.174.. cm so we’ll need to move the lens so that instead of being 2 cm away
from the sensor, it’s now 2.17 cm from the sensor: the lens needed to be moved slightly farther out
(and to maintain the exact 20 cm distance to the object, the whole camera would need to be moved
backwards slightly).



Example 45b : Suppose we re-do the last
part of the previous problem assuming that
the object and camera are both fixed in
place. In part (e) of the previous problem,
we assumed that the distance from the lens
to the object was still 20 cm but since we
had to increase the lens-film distance, that
meant that in effect we had to move the
whole camera slightly farther from the ob-
ject. It wasn’t much - just a couple of mil-
limeters, but suppose the camera body and
the thing we’re photographing are fixed.
Where do we need to put the lens now?

Initially, the object was located 20 cm in front of the lens, and the sensor was 2 cm behind the lens.
Those two points then are separated by 22 cm and we can’t change this since the camera is locked
in place. That does give us an additional relationship we can use though: do + di = 22 cm.

We still have our lens equation: di =
dof
do−f

but we can replace all occurrences of do with 22− di and
we know f = 1.96 so:

di =
(22−di)(1.96)
22−di−1.96

or di =
(22−di)(1.96)

20.04−di
.

Multiplying both sides by the denominator on the right (and letting di = x to simplify solving the
equation a bit):

(20.04− x)(x) = (22− x)(1.96)

If we expand out and recollect all these terms, this becomes the quadratic equation:

x2 − 22x+ 43.12 = 0 which has solutions: di = 19.82 cm or di = 2.175 cm.

It appears that there are two locations we can place the lens. Why the ambiguity?

Notice that the two distances add up to the original 22 cm separation distance. Since we can ‘turn
around’ a lens and get the exact same focal length according to the Lensmaker’s equation, an object
at A that focuses at B means that an object at B would focus at A. We see this in the lens equation
as well if we just swap the locations of di and do. If we put an object where the image was, we’ll
get an image where the object was.

The solution we’re looking for here would be the di = 2.175 cm one, where we just make a tiny
adjustment to the lens location to bring the object into focus.

(If we keep enough significant figures, this result is slightly different than the position we had in
part (e) in the previous problem. The closer the object is to the lens, the more different they will
be.)

(Note that means the bug is now 22 − 2.175 = 19.825 cm from the lens, instead of 20 cm which
means the magnification factor is m = −di/do = −(2.175)/(19.825) = −0.109.)



Example 50a : Multiple Lenses

Suppose we have two lenses separated by 40 cm set up as in the figure. They’re both converging
lenses and the first has f = +10 cm and the second has f = +20 cm. An object is placed 30 cm to
the left of the first lens. Where will the image formed by these two lenses working together be?

Rays from the object will create an image; that image then acts as the object for the
second lens.

Where will the intermediate image created by the left lens be?

di =
dof
do−f

= (30)(10)
30−10

= 300/20 = +15 cm so this will be a real image, 15 cm to the right of the first
lens.

That image now becomes the object for the second lens. Where is it located according to
the second lens? The lenses are 40 cm apart, and the first lens has created an image 15 cm to the
right of the first lens, so this ‘object’ is 40 − 15 = 25 cm to the left of the second lens. That’s on
the same side as the rays ‘incoming’ to the second lens, which makes it a positive object distance:
do = +25 cm. We can now find where the second lens will create an image:

di =
dof
do−f

= (25)(20)
25−20

= 500/5 = +100 cm so this will be a real image, 100 cm to the right of the
second lens.

Magnification : the intermediate image, created by the first lens, will have a magnification of
m = −di/do = −(15)/(30) = −0.5

The magnification of the second lens will be: m = −di/do = −(100)/(25) = −4.0.

Starting from the original object then: the first lens inverts the object and reduces it in size by
a factor of 1/2; that reduced and inverted image then gets ‘processed’ by the second lens, which
multiplies it by 4 and inverts it again. The net result of these two: (−0.5)(−4.0) = +2.0 is an
image that is twice the size of the original object, and upright.

Utility of Multiple Lenses

Why use two lenses? Can we not achieve the same result with a single lens? Can’t we find some
lens that by itself creates a real, upright, magnified image? Unfortunately not, which is easy to



show:

Here we’re looking for a lens that creates a real image, so both the object and image distances must
be positive. Unfortunately, m = −di/do and both distances here are positive so the magnification
factor will be negative: the image will be inverted. We wanted an upright image, so we’re out of
luck: there’s no single lens that will do what we want.

In the case of a projector, say, that means that we can use two lenses to turn an upright object into
a magnified upright image. If we only have one lens, the image will be upside down. Usually we
can deal with this by just inverting the object to begin with, but that’s not always convenient.



Example 50b : Multiple Lenses

Suppose we have the same two lenses from the previous problem but this time they are separated
by just 10 cm. They’re still both converging lenses and the first has f = +10 cm and the second
has f = +20 cm. An object is placed 30 cm to the left of the first lens. Where will the image
formed by these two lenses working together be?

Note that the image formed by the first lens is now beyond the second lens. This is the ‘object’
for the second lens, but now the object is not on the same side as the ‘incoming’ rays for this lens.
That’s alright - it just means that the object distance is negative (see the sign rules on page 963
of the book).

The image from the first lens is forming 15 cm to the right of the first lens. The second lens is
located 10 cm to the right of the first one, which means the ‘object’ for the second lens is 5 cm
from the second lens and on the wrong side: do = −5 cm now.

di =
dof
do−f

= (−5)(20)
−5−20

= (−100)/(−25) = +4.0 cm

The image forms 4 cm to the right of the second lens, making it still a real image (it’s on the
‘outgoing’ ray side of that lens).

How large will this final image be? The magnification factor for the second lens is m = −di/do =
−(4)/(−5) = +0.8; so the overall magnification for the two lenses working together will be −0.5
from the first lens and +0.8 from the second or overall: (−0.5)(+0.8) = −0.4.

The final image will be real, inverted, and reduced to 0.4 of its original size.

Equivalent Lens

Can we find a single lens that does exactly the same thing? I.e., it should produce an image in
the same place as the double lenses did, and it should also be the same magnification: everything
identical.

Let’s try a single lens located where the first one was. The final image was 4 cm to the right of
the second lens, which means it’s 14 cm to the right of the first lens: di = +14 cm. The original
object was 30 cm to the left of the first lens so do = +30, but that makes the magnification factor
m = −di/do = −14/30 = −0.467 which is not exactly what we got from the two lenses working
together.



Unfortunately, if we want to replace these two lenses with a single one, we’ll need to find a new
place to put it.

We want the original magnification, so m = −di/do = −0.4 so di = 0.4do but we also want the
object and image to be in the same place, which means do + di = 30 + 14 = 44 cm. That’s two
equations with two unknowns we can solve directly, resulting in do = 31.43 cm and di = 12.57 cm.

What focal length would such a lens have to have to produce this?

f = dodi
do+di

= (31.43)(12.57)
31.43+12.57

= 8.98 cm

Net result: this single lens needs to have a smaller focal length, and we need to place it so that it’s
slightly farther away from the object ( 31.43 cm instead of the original 30 cm ).

Important : note how this problem is different from Example 45b. In that problem, we had a
fixed object and a fixed image location and were looking for where to position the existing camera
lens so that a sharp, in focus image would form. That sounds similar, but in that case, the focal
length of the lens was fixed: we were stuck to using the same lens we started with and were only
allowed to play with its position. In that problem we were able to find a spot, but the result was a
slightly different magnification of the object.

In this problem, we’re throwing away the two lenses we started with and looking for a new single
lens that would have the same effect, and this time we were successful: the single lens produced the
identical image (location and size) as the two lenses we started with.

It worked out this time, but recall that in the previous problem (50a), it didn’t work out there
because there is no single lens that can produce an upright, real image.

Basically you have to work through each of these types of problems separately.



Example 60a : Correcting for far-farsightedness

A person is far-sighted, which means their ‘near-point’ is farther out than normal. Suppose their
near-point is located at 50 cm. They want to be able to comfortably read a computer monitor (or
phone or tablet) that is 25 cm in front of them. What corrective lens is needed? (Ignore the small
distance between the lens and the eye and just measure all distances relative to the lens location,
but see example 60d where we do a more correct analysis.)

The lens here needs to ‘move’ the object (the monitor) so that it appears to be at their near-point,
where they can comfortably focus. The lens will be sitting right in front of the person’s eyes,
so essentially we have a situation here where we have a real object at 25 cm that needs to be
converted into an image at 50 cm. What signs should we have here? We have the object, then a
lens, then the person’s eye. The object is on the side of the rays incoming to the lens, so we have
do = +25 cm. The rays continue through the lens into the eye, which means that the image is not
on the outgoing-ray side, meaning the image will be virtual: di = −50 cm.

What focal length lens will do this?

We can rearrange the lens equation, 1
do
+ 1

di
= 1

f
into the form: f = dodi

do+di
= (25)(−50)

25+(−50)
= (−1250)/(−25) =

+50 cm.

This is positive, so apparently we need a converging lens (one that’s thicker in the middle than near
the edges) with that focal length.

The eye doctor would use the lens power instead of the focal length: P = 1/f (with f measured
in meters) so here f = +0.50 m and P = 1/f = +2.0 D (recall in that lens power is measured in
inverse meters, which are called Diopters).

Will the monitor screen ‘look’ larger or smaller?

The magnification factor here is m = −di/do = −(−50)/(25) = +2.0 which means that the here we
have the monitor appearing to be twice as far away, but twice as large: the image of the monitor
(what we see when we look through the eyeglasses) takes up the same field-of-view (same angle)
as the actual monitor (without the glasses) would have taken up.

The screen looks the same size, it’s just in focus now!



Example 60b : Correcting for near-sightedness

A person is very near-sighted, with a near-point
of 10 cm and a far-point of 20 cm. What lens
should we construct so that objects far away (like
road signs or movie screens) can be seen clearly
(i.e. not blurry). How will this lens affect their
near-point?
Note: in this case, do not ignore the lens-eye
distance; assume the lens is about 2 cm in front
of the eye.

Essentially we’re trying to turn an object at infinity into an image located at their far-point. The
object is on the same side as the light rays coming into the lens, so the object distance will be
positive infinity.

In the lens equation, the distances are all measured relative to the lens location. We want the image
to form 20 cm from the person’s eye, which means 18 cm in front of the lens. So ultimately: we’re
trying to make an image that is 18 cm from the lens. The image is clearly not on the same side as
the outgoing rays, so this is a virtual image and di = −18 cm.

1
do

+ 1
di

= 1
f
so in this case: 1

∞ + 1
−18

= 1
f
or f = −18 cm.

The focal length is negative, so this is a diverging lens (thinner in the center than at the edges).
Lens power: P = 1/f with f in meters, so P = 1/(−0.18 m) = −5.56 D. (Note that the lens power
for correcting near-sightedness is negative.)

How will this lens affect their near-point?

We’re trying to find where the person’s new near-point will be when they’re wearing these glasses.
Their eye has a near point of 10 cm, which is 8 cm in front of the lens. Where would an object have
to be so that it forms an image there? (Careful here: we’re wanting the image to form beyond the
lens, not on the side as the outgoing rays, so di = −8 cm.)

1
do

+ 1
di

= 1
f
or rearranging:

do =
dif
di−f

= (−8)(−18)
(−8)−(−18)

= +144/10 = 14.4 cm.

An object that is 14.4 cm in front of the lens (16.4 cm in front of their eye) will now appear at
their near-point. They used to be able to focus on objects as close as 10 cm from their eye, now
they can only focus on objects as close as 16.4 cm in front of their eye, so these types of corrective
lenses have that downside.

Another downside of near-sightedness is that you usually need to get glasses prescribed specifically
for you. Far-sighted people that want to be able to look at something close up can buy ‘reading
glasses’ cheaply at pharmacies. Those involve converging lenses, with positive ‘lens powers’. You’ll
see plenty of glasses on a display listing lens power of +1 D or +2 D and so on, but I’ve never seen
glasses with a negative lens power on display.



Example 60c : Correcting for near-sightedness

A person is very near-sighted, with a near-point of 10 cm and a far-point of 20 cm. What contact
lens should we construct so that objects far away can be seen clearly (i.e. not blurry). How will
this lens affect their near-point?

Note: in the previous problem, we accounted for the fact that the eyeglass lens was 2 cm away from
the person’s eye but in the case of a contact lens we can ignore than: the lens is in direct contact
with the person’s eye, so we don’t have to make any of those adjustments.

Essentially we’re trying to turn an object at infinity into an image located at their far-point. The
object is on the same side as the light rays coming into the lens, so the object distance will be
positive infinity.

In the lens equation, the distances are all measured relative to the lens location. We want the image
to form 20 cm from the person’s eye, which means 20 cm in front of the lens (different from the
previous problem since the lens is in contact with the eye now). So ultimately: we’re trying to make
an image that is 20 cm from the lens. The image is clearly not on the same side as the outgoing
rays, so this is a virtual image and di = −20 cm.

1
do

+ 1
di

= 1
f
so in this case: 1

∞ + 1
−20

= 1
f
or f = −20 cm (different from the eyeglass solution

previously).

The focal length is negative, so this is a diverging lens (thinner in the center than at the edges).

How will this lens affect their near-point?

We’re trying to find where the person’s new near-point will be when they’re wearing these glasses.
Their eye has a near point of 10 cm, which is 10 cm in front of the lens (again, we no longer have
to account for the lens-eye distance with contact lenses). Where would an object have to be so that
it forms an image there? (Careful here: we’re wanting the image to form beyond the lens, not on
the side as the outgoing rays, so di = −10 cm.)

1
do

+ 1
di

= 1
f
or rearranging:

do =
dif
di−f

= (−10)(−20)
(−10)−(−20)

= +200/10 = 20.0 cm.

So an object that is 20 cm in front of the lens (20 cm in front of their eye since this is a contact
lens) will now appear at their near-point. They used to be able to focus on objects as close as
10 cm from their eye, now they can only focus on objects as close as 20 cm in front of their eye.
This contact lens had an even worse impact on viewing close-up objects than the eyeglasses in the
previous example had.



Example 60d : Correcting for far-sightedness redux

Let’s go back to problem 60a for a minute. In 60b, we accounted for the extra 2 cm distance
between the eyeglass lens and the eye. In 60a, the problem stated to ignore that, but let’s redo that
problem taking it into account.

Going back to the figure from 60a, we have the object 25 cm from the eye so it will be 25−2 = 23 cm
from the lens: do = +23 cm. We want the image to form at the near-point of this person’s eye,
which is 50 cm from their eye, or 48 cm from the lens: di = −48 cm.

What is the focal length we need now?

f = dodi
do+di

= (23)(−48)
23+(−48)

= (−1104)/(−25) = +44.2 cm instead of the +50 cm we found in the original
version of the problem.

We probably should account for that distance between the eye and the lens for these types of
corrective lenses also.



Example 70 : Apparent Magnification

Let’s use the numbers from Example 34 and assume that a person is standing 1 meter to the right
of the lens. What is the angular size of the object and the image? What angular magnification does
this represent? (Compute it for real - do not use the magnifier rules; we’ll see why at the end.)

In that problem, we had an object that was 8 mm tall, located 16 cm to the left of the lens. It
formed an image 36 cm to the right of the lens, and we found the image to be −18 mm tall. We
found that this lens had a focal length of f = 11.1 cm.

Now, we’re standing 1 meter (100 cm) over on the right of this lens (in line with the axis of the
lens).

Angular size of the object : we are located 116 cm from the object (one meter from us to the
lens, and another 16 cm from the lens to the object), and the object has a height of 8 mm, so the
angular size, in radians, can be found from s = rθ (arc-length equal to the distance times the angle
subtended, in radians). Here we have r = 116 cm and the ‘arc-length’ subtended is (close enough)
the size of the object, so θ = s/r = (0.8 cm)/(116 cm) = 0.006897 rad.

Angular size of the image : the image is 36 cm to the right of the lens, and we are standing
100 cm to the right of the lens, so we are 100− 36 = 64 cm from the image. The angular size now
is: θ = s/r = (1.8 cm)/(64 cm) = 0.028 rad.

The angular magnification then is (0.028 rad)/(0.006897 rad) = 4.1×.

In problem 34, we found that the magnification factor for this lens was m = 2.25 but remember
that factor just tells us the relationship between the physical size of the object and image. The
image is in a different position than the object, so we perceive an entirely different apparent or
angular magnification (represented using a capital M , rather than a lower case m).

Relationship to magnifier rules

Take care here. M is still defined as θ′/θ but in the section on magnifiers, we assumed that the
image was virtual and the distance from the lens to the eye could be ignored. Neither of those was
true for this problem.

More generic (and complex) versions of these equations exist but it’s usually simpler to just apply
the process we went through in this problem for those cases.



Example 71 : Magnifying Glass (1)

What is the focal length of a magnifying glass of 3.8× magnification for a relaxed normal eye?
What will the magnification be when examining something close up (with the eye focused at the
near-point?)

For a ‘normal’ eye, the near-point is at N = 25 cm.

For a relaxed eye (far-point at infinity), the magnification isM = N/f so f = N/M = (25 cm)/(3.8) =
6.58 cm

When the eye is focusing on something at it’s near-point, M = N
f
+1 so here M = 25

6.58
+1 = 4.8×.

Example 72 : Magnifying Glass (2)

Sherlock Holmes is using an 8.8 cm focal length lens as his magnifying glass. To obtain maxi-
mum magnification, where must the object be placed (assume a normal eye) and what will be the
magnification?

The maximum magnification occurs when the image is at the near-point of the eye; any closer and
we won’t be able to see it clearly. The image will be ‘not on the outgoing ray side’, so it’s a virtual
image: di = −25 cm.

1
do

+ 1
di

= 1
f
or rearranging: do =

dif
di−f

= (−25)(8.8)
(−25)−(8.8)

= 6.51 cm.

The image is at the near-point, so M = N
f
+ 1 = 25

8.8
+ 1 = 3.84×

Example 73 : Magnifying Glass (3)

A small insect is placed 5.85 cm from a +6.00 cm focal length lens. Calculate the position of the
image and the angular magnification?

Image distance:

1
do

+ 1
di

= 1
f
or rearranging: di =

dof
do−f

= (5.85)(6.0)
(5.85)−(6.0)

= −234 cm

Magnification:

The image of the bug is over 2 meters away, far beyond the person’s near point so we’ll useM = N/f
(instead of M = 1 + (N/f) when the person is focused at their near-point).

Here then: M = N/f = (25 cm)/(6.0 cm) = 4.17×



Example: Image Formation with Two Lenses

Binoculars and some small telescopes are constructed using two lenses, one at each end of the device.

Consider an optical instrument that has an f = +30 cm converging lens at one end (the end that
gets pointed at an object), and an f = +10 converging lens at the other end (the end you look
through).

Case 1 : converging lenses separated by 50 cm

If the lenses are separated by 50 cm, where would an object very far away form an image?

The first lens will create an image at di =
dof
do−f

. If do >> f , the denominator is essentially just do,
so the image will form at di = f = +30 cm, making it a real image. The magnification for this lens
will be m1 = hi/ho = −di/do and since both do and di are positive, the image will be inverted.

The image formed by the first lens now becomes the object for the second lens. Rays
(photon paths) from the object actually do pass through the image, so in effect the second lens
‘sees’ the image formed by the first lens as if it were an actual object located at that point.

The lenses are separated by 50 cm here, so this ‘object’ is located 20 cm to the left of the second
lens. The lens will turn this into an image where? di =

dof
do−f

= (20)(10)
20−10

= 200
10

= +20 cm so the
image will form 20 cm to the right of the second lens - same side as the rays outgoing from that
lens, so again this is a real image.

The second lens will introduce another magnification factor: m2 = −di/do = −(20)/(20) = −1
which means that the final image will be real and upright.

That’s useful, since if we use this instrument the final image will be rightside up, but unfortunately
the image is forming floating out to the right of the second lens, so our eye would need to be even
further to the right to be able to see it. Basically, you’d need to hold the binoculars or telescope
way out in front of you.

We’d like to be able to put our eye right up to the second lens, which means we need the final
image to form over on the left of the second lens: i.e., we need a virtual image: we need the final
di calculated for the second lens to be negative. How can we make that happen?

The image distance formed by the second lens will be di =
dof
do−f

and we want that to be negative.
One way to achieve this is to make do smaller than f : that is, slide the second lens to the left a
bit. Let’s try that next.



Example: Image Formation with Two Lenses (continued)

Case 2 : converging lenses separated by 35 cm

If we put the second lens just 35 cm from the first one, the image from the first lens is still forming
30 cm to the right of the first lens, meaning it’s now just 5 cm from the second lens. Where will
the final image form now?

di =
dof
do−f

= (5)(10)
5−10

= 50
−5

= −10 cm. That’s to the left of the lens, a virtual image, so it’s where we
need it to be.

What about the magnification now? The second lens will introduce an additional magnification
factor of m = −di/do = −(−10)/5 = +2. The first lens created an upside-down image, which now
becomes the object for the second lens, which doubles its size, but leaves it upside down.

So we were only partially successful here. We have a virtual image, as needed, but it’s upside down.

How can we create a virtual but upright final image?



Example: Image Formation with Two Lenses (continued)

Case 3A : converging and diverging lenses : image formation

One solution involves using both an initial converging lens but then a diverging lens for the second
one. We can try various separation distances again, but here’s one solution that works.

Suppose we have our original f = +30 cm converging lens on the front of the spyglass or binoculars,
but then an f = −10 cm diverging lens on the other end (the end we look through), and suppose
these lenses are now separated by 15 cm.

The first lens forms (or at least tries to form) an image 30 cm to the right of the first lens, but
before it does so, the rays (photons) run into the second lens.

In effect, the ‘object’ for the second lens is now on the wrong side of that lens: it’s over to the
right, instead of being on the left where it should be. That’s okay though: we can still use our lens
equation if we consider an object on the wrong side of the lens (that is, on the outgoing ray side
instead of the incoming ray side) as a negative object distance, specifically here: do = −15 cm
for the second lens.

Where does the second lens lens form it’s image?

di =
dof
do−f

= (−15)(−10)
−15−(−10)

= 150
−5

= −30 cm.

The final image appears 30 cm to the left of the second lens (meaning it’s actually floating out
in front of the first lens). It’s still a virtual image: we can still stick our eye right up against the
second lens and see this image.

What about it’s orientation now?

The second lens will introduce a magnification factor of m = −di/do = −(−30)/(−15) = −2, which
means it takes the first lens’s image (which was upside down) and flips it over again, making it now
upright. Success!



Example: Image Formation with Two Lenses (continued)

Case 3B : converging and diverging lenses : overall magnification

Let’s finish this off by determining the apparent (i.e. the angular) magnification of the object.
Essentially we’re trying to decide if the final image ‘looks’ larger than the object, in an angular (i.e.
field-of-view) sense.

Suppose we use this instrument to look at an object that is 2 m tall and 30 m away.

The first lens will form an image at di = dof
do−f

= (3000)(30)
3000−30

= +30.3 cm. This image will be

magnified by m = −di/do = −(30.3)/3000 = −0.0101 so the actual height of this image will be
hi = mho = (−0.0101)(2 m) = −0.0202 m = −2.02 cm.

The lenses are separated by 15 cm, so this image is 15.3 cm to the right of the second lens (i.e. on
the outgoing ray side), making do = −15.3 cm when we apply our lens equation to the second lens.

Where will the second lens form it’s image?

di =
dof
do−f

= (−15.3)(−10)
−15.3−(−10)

= 153
−5.3

= −28.9 cm (i.e. 28.9 cm to the left of the second lens: still virtual).

This lens introduces a magnification factor of m = −di/do = −(−28.9 cm)/(−15.3 cm) = −1.89.

The 2.02 cm upside down image that the first lens created now becomes a hi = mho = (−1.89)(−2.02 cm) =
+3.81 cm tall final image. (Positive, so it’s right-side up this time.)

How about the angular magnification now?

The original object has an angular size of θobj = (size)/(distance) = (2 m)/(30 m) = 0.067 rad.

The final image was 3.81 cm tall and is located 28.9 cm from our eye, so it has an angular size of
θimg = (size)/(distance) = (3.81 cm)/(28.9 cm) = 0.132 rad.

The apparent magnification then is M = θimg/θobj = 0.132/0.067 = 1.98.

The image takes up twice as much space in our field-of-view as the original object did if we just
looked at it without using this instrument.

Note: actual binoculars and spyglasses can usually achieve much higher (apparent, angular) mag-
nifications and they do this by optimizing the separation distance between the two lenses. Try
changing that distance from the 15 cm we used here to maybe 14 cm or 16 cm and see how that
effects the final overall magnification.


