
PH2233 Fox : Lecture 03
Chapter 14 : Oscillations

Pendulums : another type of periodic motion

Suppose we have some object (like the baseball bat in this figure)
that is constrained to rotate about some point (labelled O in the
figure).
The object will ultimately be rotating about point O, so let’s
attack this via rotational equations and concepts like torque.∑

τ⃗ = Iα⃗
(Technically a vector equation, but suppose all the motion is
constrained to occur in the plane of the paper, so basically we’re
rotating about an axis coming up out of the page.)
where each (external) force acting on the object will produce a

torque of τ⃗ = r⃗ × F⃗ .
Recall that r⃗ is the vector that point from the axis of rotation
to the point where the force is being applied.

There’s some normal force acting on the object right at the rotation axis, but |r| is essentially ZERO
there, so it won’t introduce any torque.

In the real world there’s almost certainly some friction between the object and the nail or whatever
is being used to cause the object to rotate about O but for now we’ll ignore friction.

The only other external force acting is gravity. Every tiny dm element making up the object is
exerting it’s own force at it’s own location, but we showed in PH2213 that mathematically we can
treat that force as if it were all being applied at the center of mass of the object.

Let h represent the distance from the axis of rotation to the CM of the object.

We have various ways of computing torque. Let’s use the lever-arm approach here. τ = Fl where
l is the lever arm. We draw the line of action (basically the dotted line extending the F⃗g vector
and the l is the perpendicular distance from that line to the axis of rotation.

Minimal propagation of angles shows us that l = h sin θ.

Note here we’re measuring θ in the usual ‘CCW is positive’ convention but our X axis starts off
pointing straight down.

Then (with everything representing rotations about +Z coming up out of the board, our torque

equation becomes: τ = Fl = (−1)(mg)(h sin θ) = Iα (Note the (−1) out front since this force will

induce a clockwise torque and CW is negative. And I will be the moment of inertia about the O
axis.)

Well, α is the angular acceleration, which is the derivative of the angular velocity ω which itself is
the derivative of the angular position θ so this equation becomes:

I d2θ
dt2

= −mgh sin θ or: d2θ
dt2

= −mgh
I

sin θ



This is NOT the same differential equation we had with the mass on a spring (linear restoring
force), so the solution isn’t going to be a simple cosine or sine function this time.

What if the angles remain small though? In a grandfather clock, the mass at the end of the
rod only moves a few centimeters back and forth and the maximum displacement angle is probably
only 10 degrees or less.

If that’s the case, sin θ is almost equal to θ (in radians anyway). The series expansion for sin (x) is:
sin (x) = x− x3

3!
+ x5

5!
− x7

7!
+ · · · (with x in radians)

At θ = 10o = 0.1745.. rad the terms in this sum are:
sin (0.1745..) = 0.1745329− 0.000881 + 0.000001349...

The exact value of the sine here is 0.173648... so just keeping that first term, we’re making an error
of only about a half of one percent.

If we approximate sin θ as being very near θ, our differential equation turns into: d2θ
dt2

= −mgh
I
θ

which IS exactly the same form we had for the mass on a spring and the solution would be of the

same type: θ(t) = θmax cos (ωt+ ϕ) where ω =
√
mgh/I.

(Be very careful here: the ω in this equation is not the angular speed but the angular frequency of
the motion.)

Special Case : Simple Pendulum

Suppose our ‘pendulum’ is a tiny mass (basically
a point-mass M) on the end of a (massless) string
of length L.
Then I =

∑
mr2 = ML2, h = L in our equation

and the angular frequency reduces to just ω =√
MgL
ML2 or just ω =

√
g/L .

The angular frequency is connected to the frequency and period though: ω = 2πf with f = 1/T so
ultimately the period of a pendulum can be written as:

• T = 2π/ω = 2π
√

L/g : point-mass (‘simple’) pendulum

• T = 2π/ω = 2π
√

I
mgh

: real (‘physical’) pendulum

Both of those are approximations since we simplified the actual DFQ. Before we go too far we
can actually compare the approximate and exact solutions for the point-mass case.



The exact solution to the differential equation where we don’t approximate sin θ as θ does exist.

Unfortunately it involves something called an elliptic function which is expressed as an integral
we can’t do exactly and I’ve never seen a calculator that has that function built in, so it’s not
particularly practical but we can compare the approximate and exact solutions for various starting
angles as seen in the figure here.

For small angles, the exact solution (blue line) looks very much like the approximate solution, but
as the starting angle gets larger, the differences get more obvious and the actual period for the
motion is longer than our ‘simple pendulum’ formula yields.



Simple vs Physical Pendulum Comparison

Let’s consider the sort of pendulum in a grandfather clock, consisting of a rod with some mass
connected to a heavier flat metal disk. Suppose the distance from the axis of rotation to the CM
of the disk is exactly 1 meter, the disk has a mass of 4 kg and a radius of 5 cm, and the rod has a
mass of 0.2 kg and a length of 1.05 m ( so that it extends behind the disk all the way to the outer
edge of the disk; we’ll see later that in real clocks like this, there’s an adjustment screw so that the
disk can be slid slightly up or down on the rod).

Point Mass Solution : Here we have a point mass at the end of a massless rod of length L = 1 m,

so T = 2π
√

L/g = 2.0071 sec.

A step in the right direction : Let’s account for the extended nature of the disk, but ignore the
mass of the connecting rod.

The moment of inertia for a disk rotating about an axis that is perpendicular to the disk and passes
through its CM is Icm = 1

2
MR2 = (0.5)(4 kg)(0.05 m)2 = 5× 10−3 kg m2.

The disk is actually rotating about an axis coming out of the page at the point marked O in the
figure, which is 1 meter away from the center (CM) of the disk, so we’ll need to use the parallel
axis theorem to find its true moment of inertia: I = Icm +Md2 where d is the distance from the
axis of rotation to the CM of the object, so here:

I = (5× 10−3 kg m2) + (4 kg)(1 m)2 = 4.005 kg m2.

This produces a period of T = 2π
√
I/(mgh) where h is the distance from the axis of rotation to the

CM of the object (1 meter here), so: T = (2)(π)
√

4.005
(4)(9.8)(1)

= 2.00834.. sec. (Very slightly longer

than the point-mass equation gave.)



Better estimate : This time we’ll include the rod.

We have to deal with a ‘composite object’ now: the object being the disk plus the rod. Fortunately
we can just add the moments of inertia to find it.

The moment of inertia of the disk part (with the given axis of rotation at point O) we already found
to be 4.005 kg m2.

For the rod, we have a long, thin rod of mass 0.2 kg and length L = 1.05 m rotating about it’s end
and for that geometry I = 1

3
ML2 = (0.2 kg)(1.05 m)2/3 = 0.0735 kg m2.

The entire object then has I = 4.0785 kg m2.

We’re not quite done yet though since in T = 2π
√
I/(mgh) we need to know h which is the distance

from the axis point to the CM of the (now composite) object.

That’s also easy to calculate for composite objects since we can treat each ‘part’ as a point mass
located at it’s own CM and then use the point-mass center-of-mass formula.

Here we replace the disk with a point mass of 4 kg located at r = 1 m from the axis.

We replace the rod with a 0.2 kg point mass located at the CM of the rod, which will be at its
midpoint, which is 1.05/2 = 0.525 m from the axis.

rcm =
∑

miri∑
mi

= (4 kg)(1.0 m)+(0.2 kg)(0.525 m)
(4 kg)+(0.2 kg)

= 4.105/4.2 = 0.977381 m.

So h = 0.977381 m (distance from axis to CM of the overall object).

We have all the parts we need now: T = 2π
√

I/(mgh) = (2)(π)
√

4.0785
(4.2)(9.8)(0.977381)

= 2.0006 sec.

These are all incredibly close, (only 2 ms apart) but using the more accurate formula gives us a
period that is slightly less than the point-mass ‘simple’ pendulum formula yielded.

We’d like the period to be exactly 2 seconds so that a simple mechanical part could advance the
clock by 1 second every time the pendulum passes through the lowest point (moving either left to
right, or right to left).

Hence the adjustment screw seen in this figure.
It basically lets the user adjust the position of
the disk up and down as needed, which slightly
changes both the moment of inertia and the lo-
cation of the composite CM and thus will change
the period of the pendulum.
(An adjustment device like this would be needed
anyway since g itself isn’t the same everywhere,
and even changes slightly with elevation, so even
centuries ago this was the solution.)



Application : Determining I for complicated objects

For small oscillations, we found the period to be related to the moment of inertia (about the rotation
axis) and the distance to the center of mass of the object: Tphysical = 2π

√
I/(mgh).

This actually gives us a mechanism to calculate the moment of inertia of some object by suspending
it at some point and allowing it to oscillate back and forth.

We’ll need to find where the CM is also, but we
saw one trick to doing that back in chapter 9.

If we hang and object from some point (the white
dot in the top figure), the torque due to gravity
will cause it to rotate unless the center of mass is
directly below the pivot point.

In the lower figure, with the object hanging at
rest, we know the CM must be somewhere along
the vertical dotted line from the axis. Hanging the
object from a different point gives us another line
the CM must be located along, and where these
lines intersect provides where the CM must be.

Letting the object oscillate back and forth now, we know h and can measure T , so that’s enough
information to give us I, which would be the moment of inertia about the chosen pivot point. And
if we wanted to report the moment of inertia for rotations about the center of mass, we can use the
parallel axis theorem to get that: I = Icm +Md2 where d would be the distance between the pivot
point and the CM.

Torsion Pendulum
Another type of oscillatory motion is a torsion pen-
dulum in which some object (like the disk shown in the
figure) is suspended by a wire. Twisting the object about
that vertical axis will twist the wire, resulting in a ‘linear
restoring force’ that’s expressed as an angular force (i.e.

a torque): τ = −κθ (linear restoring torque).∑
τ = Iα yields the same differential equation we had

with the mass on a spring and we can directly pick off
the angular frequency of the motion to be ω =

√
κ/I so

the period would be T = 2π
√

I/κ.
Doing this with a known object gives us a way to deter-
mine that torsion constant κ for the wire too. (NOTE:
mechanical/civil engineers define a very different quan-
tity that they call the ‘torsional constant’, so don’t con-
fuse that with the definition used here.)

NOTE: if you watch the Tacoma Narrows bridge collapse videos, especially the longer ones, you’ll
see that the bridge is actually undergoing this ‘torsional’ motion leading up to the collapse.

https://www.youtube.com/watch?v=j-zczJXSxnw&t=243s

 https://www.youtube.com/watch?v=j-zczJXSxnw&t=243s 


Application : Early Estimate for G

Around 1798, Henry Cavendish did an experiment
that yielded the first good estimate for the univer-
sal gravitational constant G (the constant in the
FG = GMm

r2
gravitational force equation). (Actu-

ally he was more interested in finding the average
density of the Earth and didn’t bother to include
the G value he found, but others later repeated the
experiment focusing on estimating G.)

In that experiment, the rod connecting the lighter
metal balls (m) in the figure was suspended by a
thin wire and then brought near the heavy fixed
masses (M). The (incredibly tiny) gravitational
force between the objects caused the lighter ones
to move slightly, twisting the wire (a light shining
on the mirror attached to the wire would make a
spot that moved slightly on the wall so that the
tiny angles could be measured).

At the equilibrium point, the restoring torque τ = κθ created by the wire would just match the
torque created by the gravitational forces between the objects. They’d need the value of κ to
complete this though and the figure above shows how: the period of the disk in the upper figure
oscillating rotationally would tell them what κ needed to be. (Alternately, and the way Cavendish
approached it, if the masses start off slightly out of equilibrium, the gravitational torque would
cause them to overshoot in their rotation, resulting in angular oscillations, the period of which
could be used to determine what κ was, and the amplitude could be used to determine how far
the equilibrium point shifted due to the additional (tiny) gravitational force between the large and
small balls.



14.7 : damped harmomic motion
When we have a linear restoring force, we found
that the object oscillates with the generic solution
of x(t) = A cos (ωt+ ϕ) but that cosine would go
on forever, and in the real world these oscillations
usually (always?) diminish over time.
In class, I held a meter-stick over the edge of the
table and pulled up on the free end. When I let
it go, that end vibrated up and down but and
amplitude quickly died away.

A major reason for this is air resistance. We (briefly) looked at resistive forces in PH2213 and a
common model for them is a force that depends on how fast the object is trying to move through
some medium. For relatively slow motion, a good first approximation is FR = −bv and that’s what
we’ll use here. (At higher speeds, like those involving vehicles, the resistive force is more likely to be
proportional to the square of the velocity but that’s much more difficult to handle mathematically
so we’ll stick with the linear version.)

NOTE: a resistive force is always doing negative work since it’s always in the direction opposite the
direction of motion (which v gives us).

As a result, the object involved is continuously slowing down. For periodic motion means that
the period will be longer, which in turn means that f or ω will be smaller than what we had before.

Sticking with our linear restoring force,
∑

F = ma becomes −kx − bv = ma and noting that
a = d2x/dt2 and v = dx/dt we end up with a new differential equation:

d2x
dt2

+ (b/m)dx
dt

+ (k/m)x = 0

Based on how real objects behave, we’ll ‘guess’
that the solution will be a cosine with an expo-
nentially decaying amplitude factor:

x(t) = Ae−γt cos (ω′t)

Plugging that guess into the differential equation,
it works and we find that the exponential decay
factor is γ = b/(2m) and the new frequency of the

oscillations will be: ω′ =
√

k
m
− b2

4m2

Before we go too far though, let’s look at the equation for the new angular frequency. If there’s too
much damping (i.e. if b is too large) the second term under the square root can get large enough
that we end up with either zero or even a negative number there and we can’t take the square root
of a negative number (yet). Mathematically, we end up with what’s called an imaginary number.

Can we still get a solution for this case?



First, suppose b is such that the expression under
the square root is exactly zero. This occurs if
k
m

= b2

4m2 which implied that b = 2
√
km . If the

resistive force constant (in FR = −bv) is exactly
that value, then ω′ = 0 which just means there
isn’t any oscillating going on at all: the period
goes to infinity for the oscillating part and we’re
really just left with a decaying exponential. This
is called critical damping : the object starts off
at some displacement and just gradually returns
to equilibrium, never ‘overshooting’ or oscillating
at all. (This is usually the desired result when
damping mechanisms are being designed.)
If the expression under the square root is negative,
we get an imaginary number for ω′ and the result
of an imaginary number being used as an argu-
ment to the cosine term mathematically ends up
just producing another exponential decay factor.
This situation is called overdamping and phys-
ically it means that the damping dominates the
scenario, resulting in the object taking a longer
time to return to equilibrium.

A : underdamped
B : critically damped

C : overdamped

To complete the definitions, if we just have a little damping (not enough to trigger the purely
exponential behaviour), that situation is referred to as underdampedmotion: the object oscillates,
but the oscillations taper off.

Shock Absorbers in cars.

Shock Absorbers in buildings.



Damped Motion Example : Car Springs and Shock Absorbers

I looked up some numbers for actual cars and found one to use as an example.

The car has a mass of M = 1200 kg and
each of the four springs has a spring constant
of k = 5000 N/m and a damping factor of
b = 545.5 N s/m. In combination then, the ef-
fective spring constant for this situation is k =
20, 000 N/m and b = 2182 N s/m.

The undamped angular frequency is ω =√
k/m = 4.08248.. s−1 representing an oscillation

with a period of T = 2π/ω = 1.5391 sec.

The new angular frequency is:

ω′ =
√

k
m
− b2

4m2

=
√

20000
1200

− (2182)2

4(1200)2

=
√
16.666..− 0.8266..

= 3.97996.. s−1

representing a period of T = 1.5787 sec.
Note that the period didn’t change too much:
from about 1.54 s to about 1.58 sec.

Including the damping, we now have an exponen-
tial decay factor of γ = b/(2m) = 0.909166 s−1.
As a result, the behavior of the oscillations
changed drastically. Instead of endless cosinu-
soidal motion, the oscillations are pretty quickly
damped away after a few small bounces.

ADDENDUM: What damping factor b would be need if we don’t want the car to bounce at all?
I.e., what b will yield the critically damped situation?

This occurs when ω′ =
√

k
m
− b2

4m2 = 0, so we need k
m

= b2

4m2 or rearranging to solve for b:

b = 2
√
mk for critically damped

In our case, m = 1200 kg and k = 20, 000 N/m yields b = 9800 N s/m or about FOUR TIMES
the damping we have now.

(NOTE: apparently a few car models over the years have used ‘active suspension’ systems to com-
pletely (ideally) remove any oscillations, allowing the car to remain travelling horizontally as the
wheels bounce up and down over rough surfaces. The wikipedia article on ‘active suspension’ is
vague but hints at hydraulics or putting bits of metal in the fluid so that an electromagnet can
somehow adjust the viscosity dynamically. There are at least quite a few references listed if you’re
curious!)



(NOTE: we didn’t get to this in class today, so will do it at the start next time...)

14.8 : forced oscillations : resonance

Suppose we have an object undergoing simple-harmonic motion (like a mass on a spring, pendulum,
etc) and we apply an external force that’s at the same frequency.

Imagine a person on a swing and we give them an extra push during each cycle, timed so that we’re
pushing the person in the same direction they’re moving. That means that on every cycle, the
external force is doing positive work, adding to the energy of the motion. We found that E = 1

2
kA2

so that means the amplitude of the motion will keep growing endlessly.

Fortunately in the real world there’s always some amount of damping or friction, so energy is being
removed too. We never reach infinite amplitudes for the motion, but they can get quite large.

Adding a time-varying external force to our system:
∑

F = ma so ma = −kx− bv + Fo cos (ωt)

(where ω represents the angular frequency involved in the external force, not necessarily the same
as the natural frequency of the object in the presence of the restoring force).

Our differential equation becomes: d2x
dt2

+ (b/m)dx
dt

+ (k/m)x = Fo

m
cos (ωt)

Technically this is solvable if we assume a solution of the form x(t) = Aeiωt and allow A and ω to
be complex numbers.

The book takes the approach of ‘guessing’ a form x(t) = Ao sin (ωt+ ϕ) and leaves it to the reader
to try that and see what happens, but the actual time varying behavior of the solution is more
complicated than that.

Ultimately, ‘it can be shown’ that the amplitude
of the motion will be:

Ao =
Fo

m
√

(ω2−ω2
o)

2+b2ω2/m2

where ωo =
√
k/m (the ‘natural’ undamped, un-

forced angular frequency of the motion).
The maximum amplitude occurs when the fre-
quency of the forcing function is almost the same
as the natural frequency of the motion and can
result in very large amplitude fluctuations, a phe-
nomenon called resonance.

Real world examples: opera singers breaking glass, Tacoma Narrows bridge collapse, buildings in
earthquakes, etc.

Good videos of sound breaking a wine glass in slow motion, showing the oscillations building up in
the glass itself:

https://www.youtube.com/watch?v=BE827gwnnk4

https://www.youtube.com/watch?v=sxRkOQmzLgo

 https://www.youtube.com/watch?v=BE827gwnnk4 
 https://www.youtube.com/watch?v=sxRkOQmzLgo 

