
PH2233 Fox : Lecture 04
Chapter 15 : Wave Motion

(Note: the first part of today was finishing up the last bits from Chapter 14 : see the last chapter
14 pdf.)

15.1 : characteristics of wave motion
Waves are a common form of periodic motion
where a disturbance propagates through a ma-
terial: ripples on water, sound (which we’ll see
is tiny pressure fluctuations propagating through
the air or some other medium), we’ll even see later
how light and radio waves are basically ripples
of electric and magnetic fields propagating at the
speed of light.
I started off demonstrating waves propagating
through a ‘slinky’ toy and we saw that a distur-
bance induced at one end is seen to travel along
the ‘medium’.
Here, we give one end of the string (or slinky) a
quick pulse to the side and see that this ‘pulse’
shape travels along the string.

If we keep wiggling the end of the string, some
shape is seen to propagate along the material.
This figure shows a snapshot of the string as the
pulse passes by, just to introduce some naming
conventions.

Like with periodic motion, we can define the amplitude as how far a point on the string moves as
a result, with the maximum positive displacements labelled as crests (or peaks) and the maximum
negative displacements labelled as troughs.

With a periodic wave shape like this, we can also define the wavelength λ with the shape basically
repeating every length λ along the string.

As this sinusoidal shape propagates off to the right, we see that one wavelength will pass by a given

point in one period of time. We can thus define a wave speed of v = λ/T .

This figure highlights an important concept. As
the wave passes through some point, that point is
seen to move about it’s original location (maybe
up and down, or left and right), but there’s no net
motion of that point. There’s no net transport
of material involved here. It’s the disturbance
that’s propagating, not the material itself. In this
figure, the disturbance (the wave) is travelling to
the right with some speed. As it passes by some
point, that point is moving up and down (in this
figure) at some entirely different velocity.



Quick Examples

Tsunami Waves : Back in 2004 an earth-
quake caused a significant vertical dis-
placement of the seafloor, which in turn
generates a very large and destructive
tsunami. Satellites with radar observed
the wavelength of the disturbance to be
about 800 km and the period was about
1 hour.
We can use that information to determine
the propagating speed of this distur-
bance. v = λ/T = (800 km)/(1 hr) =
(800, 000 m)/(3600 sec) = 222 m/s (just
under 500 miles/hour) which is about 2/3
the speed of sound!

It’s important to note that this was how the disturbance propagated while in deep water, and the
actual vertical displacement of water was less than a meter, which means that a boat out in the
deep ocean would have moved up and down that far as the wave passed it but this process would
have taken an hour so wouldn’t even have been noticed.

(It’s when the disturbance moves into shallow water that the amplitude builds up to destructive
levels. Fortunately the wave speed gets dramatically lower in shallow water at least.)

Human Hearing : The ear nominally re-
sponds to sound frequencies from 20 Hz
to 20, 000 Hz (that range typically shrinks
with age - I really can’t hear anything
above about 4000 Hz ... ). The speed
of sound in air is about 343 m/s, so what
wavelengths does this range represent?
v = λ/T = λf so λ = v/f = (343 m/s)/f .
A f = 20 Hz sound would have λ =
(343 m/s)/(20 /s) ≈ 17 m -
A f = 20, 000 Hz sound would have λ =
(343 m/s)/(20, 000 /s) ≈ 0.017 m or just
under 2 cm.
If you could ‘see’ the pressure disturbances
in the air, the peaks would be that far
apart from one another.



15.2 : types of waves
Two common types of waves are shown in
this figure.

• Transverse (also called shear waves
or S-waves)

• Longitudinal (also called pressure
waves or P-waves)

Transverse Waves (upper figure): If we introduce a disturbance by moving one end back and
forth, points in the slinky move perpendicular to the medium. These are called transverse waves.
These waves are present in stringed musical instruments (piano, guitar, etc), but also can be present
in earthquakes. The molecules in the rock are being moved sideways relative to the ‘next’ set of
molecules in the medium and this ‘side to side’ motion is commonly called a shear wave or simply
an S-wave in that context. (It’s also fairly common for materials to have less strength in the
‘shear’ direction: I usually use the example of a toothpick in this context. If you hold each end of
a toothpick and try to break it half by pulling outward on each end, it’s almost impossible. But if
you push the two ends laterally in opposite directions, the toothpick easily snaps in half.) (Note
that these types of waves won’t exist in liquids or gasses since if the molecules in the medium move
this way, they don’t exert any force on the ‘next’ set of molecules: molecules in gasses and liquids
can ‘slide’ laterally easily.)

Longitudinal Waves (lower figure) : In the lower figure, molecules in the medium are moving
back and forth in the same direction as the wave itself, which means they’re alternately being pushed
into and away from each other, creating compressions and expansions: i.e. zones of higher and lower
pressure, so these are often called pressure waves or simply P-waves. This type is present in
earthquakes too and are how sound propagates through gases, liquids, and solids. They’re the type
of waves present in wind instruments (trumpet, flute, tuba, organ, etc).

Here’s an illustration of the sound P-waves being generated by a drumhead oscillating back and
forth.



Why is this difference important? Each of
these wave types, since they represent different
mechanics at the molecular level, can propagate
at quite different speeds.
The chart on the right shows wave speeds in vari-
ous different rock types (in km/s). The speed for
P-waves tends to be much higher than S-waves in
pretty much any real-world material.
Geologists and oil companies prospecting on land
sometimes set off explosions or use vibration
trucks to send sound energy into the ground,
which can generate both of these types of waves
and cause a more complicated post-processing
step.

These different wave types can be useful also. S-waves won’t propagate through the Earth’s liquid
inner core or molten outer core, but P-waves will, so earthquakes (and formerly nuclear bomb
testing) provide information about the structure of the core.



15.4 : mathematical representation of a traveling wave

Let’s briefly jump ahead and look at how waves are usually modelled. We’ve already started drawing
them as sine waves and there’s a reason for that. Basically any real, physical disturbance and the
resulting wave shape can be written as a combination of sine (or cosine, or both) waves.

The time series in the upper left figure looks pretty random but it turns out it was built from
just four sine waves of different wavelengths and phase shifts. Those four waves are shown in the
upper right, and their specific amplitudes and phases are shown in the bottom left and right panels
respectively.

Time Series The four sines that created it

Amplitudes Phase Shifts

The lower figures represent the ‘spectrum’ of the time series and the process of deconstructing a
time series into the sines (and/or cosines) that make it up is called the ‘Fourier transform’. Any
real, physical time series can be converted into underlying pure sines and cosines like
this, which is why we’ll start off looking at waves that can be presented as a single sine
wave.

You’ve likely seen these in the context of mu-
sic. Music, voice, earthquakes, etc are made of
a continuum of amplitudes and phases that are
often averaged over a few frequency ranges and
displayed like the audio spectrum shown on the
right. Your music player might have a display
like that in the context of the ‘equilizer’ settings,
where you can boost or suppress various ranges of
frequencies.



Now that we’ve justified things a bit, let’s look at
how we can mathematically represent a propagat-
ing sine wave.
The bold line represents what the wave looks like
at t = 0 and the wave here is bodily moving to the
right at a wavespeed of v. The dotted line shows
what the disturbance looks like at some later time
t, when the wave has moved to the right a distance
of d = vt.

Suppose we move along with the wave at the same speed. We don’t see the wave changing at
all now, and could describe it (in our coordinate system that’s moving along with the wave) as:

D(x′) = A sin (2π x′

λ
) .

Going back to our fixed coordinate system now: x = x′ + vt so x′ = x − vt so we can write D in
our fixed coordinate system as: D(x, t) = A sin (2π x−vt

λ
) or:

D(x, t) = A sin (2πx
λ

− 2πvt
λ

)

Let’s simplify this a bit. v = λ/T so this becomes:
D(x, t) = A sin (2πx

λ
− 2πt

T
)

This still looks a little kludgy, but 2π/T = ω , the angular frequency.

Let’s define an analogous symbol for the wavelength: 2π/λ = k , called the wave number.

NOTE: don’t confuse this with the spring constant that also uses the symbol k.

Now we can write this travelling wave (moving in the +X direction) in a simpler form:

D(x, t) = A sin (kx− ωt)

We can go through the same process for a wave travelling to the LEFT (the -X direction) and find:

D(x, t) = A sin (kx+ ωt)

NOTE: v = λ
T

= 2π
k

ω
2π

= ω
k
so we can connect the wavespeed to the wavelength and period, or

directly to the angular frequency and wave number.

Taking a snapshot of this wave at t = 0 : D(x, 0) = A sin (kx) which is just the periodic shape we
expect.

IF we stand at a fixed location, say x = 0 and look at what happens, we see that D(0, t) = A sin (ωt)
and the point just moves up and down sinusoidally as expected as the wave passes by this point.
So this D(x, t) expression is periodic in space and time simultaneously.

Some common (sloppy) symbolism that occurs in the wave field:

D(x, 0) = D(x) : i.e. at t = 0 we just have some particular spatial form and the same symbol D
with just a single argument is sometimes used for this.

The first form (with the two arguments in this case) refers to the complete travelling wave,
giving it’s amplitude at any position, at any time. The second form (with a single argument) is just
the spatial part: a snapshot of what the wave looks like at t = 0.

Suppose we have any arbitrary initial shape D(x) (might be anything - an exponential, GAUSSIAN,



a square wave, etc). Then what would this thing look like propagating? Do the same thing we did
at the start. We’re essentially replacing the x in the (non-moving) version with x − vt to give us
the moving version. I.e.: D(x, t) = D(x− vt) for this shape propagating to the right, or D(x+ vt)
if it’s moving to the left.

Gaussian shape example : D(x) = e−x2
, so the propagating version would be D(x, t) = e−(x−vt)2

giving us the displacement of any point along the string (or whatever the medium is) at any time.

That D(x, t) form describes the entire wave for all x and all t in a single equation, all at once.

Needless to say, the expression can be pretty convoluted, but for a continuous, pure sine wave it’s
just D(x, t) = A sin (kx± ωt) and we’ll use that form to extract a lot of information about waves
in general.

Simple Example

As a preview, recall the tsunami wave we started with, passing under a boat out in the deep ocean.
The amplitude of the wave (in deep water) was A = 1 m. The wavelength was λ = 800 km =
800, 000 m, and the period was T = 1 hr = 3600 s.

That means k = 2π/λ = 7.854× 10−6 m−1 and ω = 2π/T = 1.745× 10−3 s−1.

The wave speed v = λ/T = ω/k = (1.745 × 10−3 s−1)/(7.854 × 10−6 m−1) = 222.2 m/s (same as
before of course).

What about the vertical motion of the boat as this wave passes under it? The boat (hopefully) will
be floating on the water, so will go up and down as the surface of the water does the same. Let’s
say the boat is located at x = 0, with the wave passing to the left (the negative X direction, or to
the West in the usual convention). Then it’s displacement would be D(0, t) = A sin (0 + ωt).

• The vertical velocity of this point will be vy =
∂D(x,t)

∂t
= Aω cos (ωt) which means the vertical

velocity of the boat will vary between ±Aω = ±(1 m)(1.745×10−3 s−1) = ±1.745×10−3 m/s
or about ±2 mm/s (that’s millimeters per second).

• The maximum vertical acceleration the boat will feel means taking one more time deriva-
tive: ay = ∂vy

∂t
= −Aω2 sin (ωt) which means the acceleration will vary between ±Aω2 =

(1 m)(1.745× 10−3 s−1)2 = 3× 10−6 m/s2 which would be about (0.0000003)g′s.

Both the vertical velocity and acceleration are so tiny that anyone on a boat out in deep water
would not even be aware that a tsumani passed under them.


