
PH2233 Fox : Lecture 05
Chapter 15 : Wave Motion

WAVE SPEED : If you make some simplified assumptions about what’s going on down at the
micro-level, we can derive expressions for the speed.

I’ll derive one of these and then just list the other common forms and do a few examples.

In each case though, we’ll find that the wave speed v only depends on physical properties of the
material but doesn’t depend on the amplitude or frequency of the wave. (That turns out to be not
entirely correct, as we’ll see later with light.)

Wave Speed Derivation
Longitudinal Waves in Gas or Liquid

Symbols:
S : cross-sectional area of piston
ρ : density of medium
Po : ambient pressure
P = Po +∆P : pressure induced by piston
v′ : piston velocity
v : wave speed
dashed line : leading edge of compression

First, we need to introduce the Bulk Modulus (B)

idea. If an object is subjected to inward forces from
all sides, its volume will decrease: ∆V = − 1

B
Vo∆P so

B = − ∆P
∆V/Vo

. (Since the volume DECREASES with a
pressure increase, that negative sign is thrown in to make
the values of B positive.)
Let’s rearrange that into a form that will be useful in the
wave speed derivation: ∆P = −B∆V

V
.

See table 12-1 on page 343 for some selected values. (The
table is included at the end of these notes too.)

We start off with our gas (or liquid) at some ambient pressure Po. Now we start pushing the piston
towards the right. The gas (or liquid) starts also moving to the right but it also causes a wave
disturbance that propagates much faster. In the time ∆t, the piston moves a distance of d = v′∆t
to the right, but the leading edge of the disturbance (i.e. the wave) moves a distance of d = v∆t to
the right.

The compressed part of the medium is moving along with the piston, so it has picked up a momentum



of p = mv′. What is the mass involved? It’s all the molecules in the medium between the piston
and where the leading edge of the compression (the wave) is located at that time. Looking at the
upper figure, that would be the original volume times the uncompressed density, so m = (S)(vt)ρ.

We can write the momentum then as p = ρSvv′∆t. Initially that mass was at rest, so technically
we can write this as ∆p = ρSvv′∆t : that’s how much the momentum of that amount of material
has changed.

We can write that as ∆p
∆t

= ρSvv′ but ∆p
∆t

is just the force that was applied, which itself is the
change in pressure ∆P times the area of the piston, so ρSvv′ = (∆P )(S). Cancelling the S that

appears on both sides: ∆P = ρvv′ .

Let’s bring in our bulk modulus now. ∆P = −B∆V
V

.

The original volume of the material is V = (S)(v∆t).

The amount the volume has been changed (reduced) is ∆V = (S)v′∆t.

Setting the two boxed equations equal to one another:

ρvv′ = −B (−Sv′∆t)
Sv∆t

and after cancelling some common terms: ρv = B/v which we can rearrange

into v =
√
B/ρ , giving us the wave speed in a liquid or gas.

Example: Speed of Sound in Air

For air (at STP) : B = 1.42×105 N/m2 and ρ = 1.293 kg/m3 so sound waves should travel through
air at about: v =

√
B/ρ =

√
(1.42× 105)/(1.293) ≈ 331 m/s.

I mentioned in class that we have to be care-
ful with tables of bulk moduli since thermody-
namics can mess us up. The table in the book
(and included a couple of pages from now) claims
that B for air (and other gasses at STP) is B =
1.01 × 105 N/m2 but there’s a little footnote at-
tached noting this is only when the temperature
remains constant. That might be arrangeable in
a special lab, but out in the real world when a
gas is compressed it’s temperature goes up. As
a sound wave passes through air, the air is alter-
nately compressed and rarified, with its temper-
ature fluctuating up and down slightly. This is
NOT an isothermal situation, so a different B is
involved, the B = 1.42× 105 N/m2 that I used in
this example.
Note that the density and bulk modulus vary with
pressure and temperature, which vary with alti-
tude, so sound speed also varies with altitude, as
seen in this figure.



Example: Speed of Sound in Water

For water (at STP) : B = 2 × 109 N/m2

and ρ = 997 kg/m3 so sound waves should
travel through water at about: v =

√
B/ρ =√

(2× 109)/(997) ≈ 1420 m/s.

This speed is also affected by factors such as tem-
perature, pressure, and salinity, so the speed of
sound underwater varies significantly from this as
you go deeper below the surface. In salt water,
the sound speed near the surface of the ocean is
about 1500 m/s.
We’ll talk more about this in the next chapter, but
notice how the sound speed reduces with depth
until we get down to around 700 m and then rises
again after then. This depth is called the ‘deep
sound channel’ or the ‘SOFAR’ region and we’ll
find that sounds created around that depth tend
to be trapped and can therefore propagate long
distances. Whales use that depth to broadcast
their songs across entire ocean basins.



Transverse (S) waves on String/Wire

v =
√
FT/µ where FT is the tension in the wire and µ is the mass/length of the medium.

Note that it’s just the mass per length that mat-
ters here, so if we double the length of a wire but
keep it under the same tension, the wavespeed re-
mains the same. If we use a thinner wire made of
the same material, it’s mass/length will be less,
making the wave speed higher. (We’ll see later
how this relates to piano wires: the lower notes use
thicker strings and/or lower tension, the higher
notes use thinner strings and/or higher tension.)

Example : A 20 kg bucket of rocks is hanging at the end of an 80 m long rope that has a mass of
2 kg. If we wiggle the rope, how fast will the disturbance propagate (a) at the bottom of the rope,
and (b) at the top of the rope?

(a) At the bottom of the rope, applying Newton’s Laws we find that the tension in the rope is equal
to the weight of the bucket of rocks, or FT = mg = (20 kg)(9.8 m/s2) = 196 N .

The mass/length of the rope is µ = (2 kg)/(80 m) = 0.025 kg/m,so:

v =
√
FT/µ =

√
196/0.025 = 88.544 m/s.

(b) At the top of the rope, the tension will be equal to all the weight below that point, which
includes both the rope and the bucket of rocks, so FT = mg = (22 kg)(9.8 m/s2) = 215.6 N , giving
us a wave speed of v =

√
FT/µ = 92.865 m/s.

Example : A steel (ρ = 7800 kg/m3) guitar string is under 46.5 N of tension. If the string is
60 cm long with a diameter of 0.22 mm, what will the wave speed be on this wire?

We have the tension here but need the mass/length µ = M/L. The mass will be the volume of the
string (which is basically a really long, thin cylinder) times its density, so M = (volume)(density).
The volume is just it’s length times its cross-sectional area though, so M = (πr2)(L)(ρ). The
mass/length then will be µ = M/L = (πr2)(ρ) : the normal 3-D density times its cross-sectional
area.

Here then, µ = (π)(0.11× 10−3)2(7800) = 2.965× 10−4 kg/m.

Finally, v =
√
FT/µ =

√
46.5/(2.965× 10−4) = 396 m/s.

(We’ll see soon this translates into the string vibrating at 330 Hz : this is the ‘high E’ string on
this guitar.)



Longitudinal (P) waves (in solids)

v =
√
E/ρ

ρ is the density of the medium
E is the elastic modulus (also called the
Young’s modulus) of the material.
If we take a solid with some cross sectional area
A and apply a force F as shown in the figure, it’s
length l will change by:

∆l = 1
E
lo

F
A

Shear (S) waves (in solids)

v =
√
G/ρ

ρ is the density of the material
G is the shear modulus
Here the material is not under tension along it’s
length (so it’s not like the wire under tension
above). Here a force is applied laterally, causing
the object to deform laterally by some ∆l. In
this case:

∆l = 1
G

F
A
lo

Example: Speed(s) of Sound in Metal

A train rolling along steel tracks can excite both longitudinal (P) and transverse (S) wave types.

Steel has a density of about ρ ≈ 7800 kg/m3.

The Young’s modulus for steel is about 200 × 109 N/m2, yielding a longitudinal speed of v =√
E/ρ = 5060 m/s.

The shear modulus for steel is about 80 × 109 N/m2, yielding a slower shear wave speed of v =√
G/ρ = 3200 m/s.

In either case, the wave speed through metals is far higher than that in liquids or gasses.



Surface Waves

Whenever two materials of different density are in
contact (like the air-water interface at the surface
of a body of water), waves can propagate along
that interface. These are more generally called
‘surface waves’, ‘density waves’ or ‘gravity waves’
(not related to rippled in space/time which are
also called gravity waves).
A common commercial device that exploits this
is created by half-filling a volume with water (of
one color) and then putting a layer of lighter oil
(with a different dye color in it) on top. Moving
the object can create waves that slowly propagate
across the interface. (An old lava lamp can show
similar behavior.)

The equation for the wave speed is quite
complicated in the general case (see https:

//uwaterloo.ca/applied-mathematics/

current-undergraduates/

continuum-and-fluid-mechanics-students/

amath-463-students/

internal-gravity-waves but water is
about 833 times as dense as air, which
leads to a special case (see https:

//uwaterloo.ca/applied-mathematics/

current-undergraduates/

continuum-and-fluid-mechanics-students/

amath-463-students/surface-gravity-waves

which can be simplified in a couple of scenarios:

• If the wavelength is much larger than the water depth (the so-called ‘shallow water limit’),
then v ≈

√
gd where d is the depth of the water

• If the wavelength is much shorter than the water depth (the so-called ‘deep water limit’), then
v ≈

√
g/k (where k = 2π/λ is the wave number

Example : Tsunami Wave

Early on, we talked about a tsunami with a wavelength of λ = 800 km and period of T = 3600 sec.
Estimate the water depth.

First we have to decide is this is a ‘shallow water wave’ or a ‘deep water wave’. Be careful of
that naming convention though. Obviously the deep ocean is,‘deep’ but the important factor is the
wavelength compared to the water depth. The ocean is only a few miles deep, so λ is FAR larger
than the water depth, making this technically a ‘shallow water’ wave.

In that case, v ≈
√
gd so d ≈ v2/g. We earlier found the wave speed to be v = 222 m/s, so

d ≈ (222 m/s)2/(9.8 m/s2) = 5000 meters. (The Pacific Ocean depth varies quite a bit, but that’s
not a bad rough estimate.)
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15.3 : Energy Transported by Waves

Suppose we have a wave passing through some medium. If we focus on a tiny calculus-sized in-
finitesimal piece of the material, it will oscillate with some amplitude A as the wave passes through
that point. This little mass element is undergoing simple harmonic motion, so there’s some effective
spring constant involved, and we found that the total energy related to the motion of this mass is
E = 1

2
kA2 (with that energy sloshing between kinetic and potential energies). Also, ω =

√
k/m so

k = mω2 with ω = 2πf so we can write this as k = (m)(2πf)2.

The energy involved in this little fragment of the material then is E = 1
2
[4π2f 2m]A2 or E =

2π2mf 2A2.

Consider a transverse wave
propagating along a string:

We’ll break the string into an infinite number of infinitesimal ∆m mass elements where ∆m = µ∆x

and each will then represent a tiny bit of energy: ∆E = 2π2f 2A2µ∆x

The factor in front of the ∆x is constant and represents the energy-per-meter of the wave.

How much energy will pass by a fixed point on the string in a time interval ∆t? The wave is
travelling at a speed of v along the string, so all the energy contained within ∆x = v∆t will pass

by this point: ∆E = 2π2f 2A2µv∆t

The rate at which energy is passing by (i.e. the rate at which energy is being transported along

the medium) will be P = ∆E
∆t

= 2π2f 2A2µv

Example : Power involved in wiggling a rope

A 20 kg bucket of rocks is hanging at the end of an 80 m long rope that has a mass of 2 kg. At the
bottom, we’re going to wiggle the rope with an amplitude of A = 5 cm at a frequency of f = 2 Hz.
How much power does this require?

v =
√
FT/µ and µ = M/L = (2 kg)/(80 m) = 0.025 kg/m.

At the bottom of the rope FT = (20 kg)(9.8 m/s2) = 196 N so v = 88.543 m/s.

The power needed then is P = 2π2f 2A2µv = (2)(π)2(2)2(0.05)2(0.025)(88.543) = 0.4369 Watts
(not much).

Now, when we looked at this before, we found that the tension at the top of rope will be higher
since that point is supporting not only the bucket of rocks but the mass of the rope itself. At the
top of the rope, FT = (22 kg)(9.8 m/s2) = 215.6 N so v = 92.865 m/s.

If we assume there aren’t any losses here, the power we’re putting into the rope at the bottom has
to all reach the top, so P is a constant here. We have a different v though so something has to give.
µ and f are constants so it looks like the wave amplitude A has to absorb this change. A2v must
be constant so (Atop)

2vtop = Abottom)
2vbottom or rearranging:

Atop = Abottom

√
vbottom/vtop = (5 cm)

√
88.543/92.865 = 4.88 cm.


