
PH2233 Fox : Lecture 06
Chapter 15 : Wave Motion

NOTE: some useful videos related to travelling waves, standing waves, and normal modes can be
found on the old course website at:

https://newton.ph.msstate.edu/~fox/ph2233/ch15/index.html

Or embedded at the appropriate points in the online lecture slides:
https://newton.ph.msstate.edu/~fox/ph2233/ch15/lecture06.html

Energy in P-waves

Last time we looked at energy and power in trans-
verse waves on a wire. We can do a similar anal-
ysis for a longitudinal wave (a P-wave) passing
through a medium like a gas or liquid. These
waves aren’t constrained to move along a line like
the string in the previous example. They are
‘wave fronts’ (2-dimensional shapes) propagating
through the medium, so let’s look at the rate at
which energy is passing through a particular area
in a particular time.
If we look at a particular cross sectional area, how
much of the wave will pass through that area in a
given amount of time? That will tell us how much
energy is passing through the given area per unit
of time.

The wave is travelling at a wave speed of v, so in a time interval t the volume of the wave passing
through the given area will be (S)(vt) so the mass involved is that volume times the density ρ.

Basically the energy involved in m = ρSvt worth of ‘stuff’ vibrating is what’s passing through the
given area per time.

E = 2π2[ρSvt]f 2A2 or E = 2π2ρSvtf 2A2 . (Joules)

That’s fine, but let’s look at the rate at which energy is being carried (transported) by the wave.
Power is energy/time, so apparently:

P = E/t = 2π2ρSvf 2A2 (Watts)

A commonly-used related quantity is the power per area, called the intensity (in Watts/m2).
It’s this intensity in the context of sound that our ears respond to, for example, and we’ll see in
the next chapter that a common unit used for intensity is the decibel (dB), related to the base-10
logarithm of the intensity.

Dividing the above equation by the area S:

I = P/S = 2π2ρvf 2A2 (Watts/m2)
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f 2 effect : the energy/power/intensity are all proportional to the square of the frequency involved,
which means that the higher frequencies are more expensive to generate in terms of energy. When
objects can vibrate at multiple frequencies, most of the energy ends up being taken up by the lowest
frequency (easiest to generate) mode.

1/r2 effect : Before we look at some examples,

sound and many other sources of wave often send
waves out in all directions. A source is putting out
some power (watts) but that power gets spread
around an expanding surface.
Intensity is power per area, so I = P/S =
P/(4πr2)
Note that I ∝ 1/r2, so if we want to compare
the intensity at one distance to the intensity at a
different distance:

I2
I1

=
r21
r22

If we move twice as far away from a sound source, the intensity (W/m2) drops by a factor of four,
and looking at the equation for I we see that the wave amplitude must drop by a factor of two.



Examples

Example - Power vs Frequency) : Compare a high pitched 10, 000 Hz signal to a low 200 Hz

signal. The higher one has 50x the frequency, so will have (50)2 or 2500 times the intensity
(power/area). One reason we’re so much more sensitive to higher frequencies - and why the high
frequency response of the ear can be obliterated via concerts, ipod’s, etc.

Example - Determining A for sound waves in air : Suppose we have a 40 W speaker that’s emit-
ting a pure 1000 Hz tone. If we look 2 m away from the speaker, the air molecules are vibrating
with what amplitude A?

P = 2π2ρSvf 2A2 so we have everything here to determine A.

First, I should note that this is NOT a realistic scenario. As we saw with the ‘equilizer’ picture last
time, music and voices almost always involve many frequencies, each one carrying a small amount
of energy that overall adds up to the total watts of power being emitted by the speaker. If we tried
to drive a speaker at a full 40 W concentrated in a single frequency, it would likely destroy itself.

So the amplitude we calculate here will be a considerable OVER-ESTIMATE.

Real speakers aren’t omnidirectional, but let’s assume this one is, sending sound equally in all
directions. At r = 2 m from the speaker, it’s 40 W is being spread evenly over a surface of area
S = (4πr2) = 50.265 m2.

Then (40) = (2)(π)2(1.2)(50.265)(343)(1000)2A2. Solving, we find that A ≈ 1× 10−5 m

So a molecule of air next to our eardrum is oscillating back and forth a distance of only about
0.01 mm (and yet we’ll find in the next chapter that a sound intensity this high would cause
significant hearing loss).

NOTE: that 0.01 mm looks insignificant to us, but an individual molecule is only about 10−10

meters in diameter, so a molecule of air is moving back and forth about 100, 000 times it’s diameter
as these waves pass by.

Example - Estimating earthquake power : Back in the 60’s when my family lived in Okinawa, an
undersea volcano about r = 100 km away generated an earthquake that lasted about 2 minutes. In
our neighborhood, I watched houses oscillate side to side with an amplitude of about A = 10 cm
with a frequency of about f = 0.1 Hz (i.e. about 10 seconds between waves). For rock, v is (very)
roughly 4500 m/s and ρ is (very) roughly 3000 kg/m3 so how much power and energy was involved
here?

P = 2π2ρSvf 2A2 becomes:

P ≈ (2)(10)(3000)(4π100, 0002)(4500)(0.1)2(0.1)2 or P = 3.3 × 1015 W . The earthquake lasted
about 120 seconds so the total energy released would be roughly E = Pt = 4× 1017 J .

1 ton of TNT is equivalent to 4.2× 109 J so this would be around 94 megatons of TnT. This was a
pretty small earthquake, yet it represented more than twice the total energy of the largest hydrogen
bomb ever detonated (look up the Tsar Bomba on youtube). Very large earthquakes (like the one
that produced the 2004 tsunami) can release thousands of times more energy.



15.5* : the wave equation

See this section for the derivation in the case of a transverse wave on a string/wire. Similar deriva-
tions can be done for other types of waves in other materials. The end result is always of the form:

∂2D
∂x2 = 1

v2
∂2D
∂t2

(wave equation)

Example : We’ve been using the form D(x, t) = A sin (kx− ωt) to represent a travelling wave,
and we’ve seen that we can build other ‘shapes’ by combining sines with different amplitudes,
wavelengths, and phase shifts.

Let’s check that this form satisfies the wave equation.

• ∂D/∂x = Ak cos (kx− ωt) so differentiating again:

• ∂2D/∂x2 = −Ak2 sin (kx− ωt)

• ∂D/∂t = −Aω cos (kx− ωt) and differentiating again:

• ∂2D/∂t2 = −Aω2 sin (kx− ωt)

• Substituting these expressions into the left and right sides of the wave equation:
−Ak2 sin (kx− ωt) = 1

v2
(−Aω2 sin (kx− ωt)

Cancelling terms that appear on both sides yields: k2 = 1
v2
ω2 or v = ω/k which is in fact the

speed of this wave.

General result : Actually any function D(x, t) that is of the form D(x, t) = f(kx−ωt) will satisfy
the wave equation (as long as f is continuous and has a first derivative that is also continuous). In
english, that means if we have any sufficiently smooth function f(x) (a sine or cosine, a gaussian
pulse shape, etc), then replacing its argument x with kx − ωt (which is (k)(x − vt)) creates a
travelling wave of the same shape that is a legal solution to the wave equation.

The proof of this involves the chain rule for partial derivatives which is in general a bit more
complicated than the chain rule for regular derivatives but in fact ends up working in the ‘expected’
way for this situation. For example, in order to do ∂D/∂x the first step will be to take the derivative
of f with respect to its argument (the step that turned the sine into a cosine in the first step above),
then we’ll take the partial derivative of that argument (which is kx− ωt) with respect to x, which
brings out a factor of k. So ∂D

∂x
= (f ′)(k) = kf ′.

Taking another (partial) derivative with respect to x brings out another factor of k leaving us with
∂2D
∂x2 = k2f ′′.



The time derivatives proceed in the same fashion. For example, in order to do ∂D/∂t the first step
will be to take the derivative of f with respect to its argument (the step that turned the sine into
a cosine in the first step above), then we’ll take the partial derivative of that argument (which is
kx − ωt) with respect to t, which brings out a factor of ω. So ∂D

∂t
= (f ′)(ω) = ωf ′. (Note this f ′

is the same as we had in the spatial derivative part since it’s just the derivative of that function
with respect to it’s argument (and not with respect to x or t).

So ∂D
∂t

= ωf ′ and ∂2D
∂t2

= ω2f ′′.

Putting these expressions back into our original wave equation ∂2D
∂x2 = 1

v2
∂2D
∂t2

becomes:
k2f ′′ = 1

v2
ω2f ′′

As long as f ′′ exists (which requires f ′ to be continuous and differentiable, which in turn requires
f itself to be so as well), this implies that:

k2 = ω2/v2 or v = ω/k, the known wave speed.

Ultimately then, we can start with any realistic function f with a single argument and replace that
argument with kx− ωt and produce a travelling wave that satisfies the wave equation.

The reason we mention all this here is that this equation appears in many scenarios that don’t
directly appear to involve waves. It appears in chemistry, crystal growth, fungus and bacteria
growth, predator/prey models in biology, and many other scenarios.

What it implies is that if the analysis of some scenario ends up yielding a differential equation
that looks like the wave equation, then wave-like behavior will appear. Just like if the analysis of
some scenario yields an equation that looks like d2f/dt2 = −(constant)f then periodic (oscillatory)
behavior will appear.



15.6 : principle of superposition

The wave equation is linear, so if D1(x, t) is a solution (maybe a sine wave travelling in the +x
direction) and D2(x, t) is some other solution (maybe a gaussian shape travelling in the opposite
direction) then any linear combination, like D1 +D2, is also a solution.

In a physical sense, this means that the solutions
can be superimposed on each other - basically the
two (or N) waves are propagating through the
medium INDEPENDENTLY.

In the top figure, the three sine waves combine to
create the shape just below them, so that shape
propagating is really made up of the three sine
waves all propagating together.

In this set of figures, we see a collection of cosines
or phase-shifted sines being used to try and build
a ‘square wave’. Again, each sine or cosine will
propagate through the medium with the same
speed v, so the shape we built from them will
maintain that shape and propagate along with
that same speed v.

We’ve already talked about Fourier series - build-
ing almost arbitrary shapes from sines and cosines
and here we’re letting those waves propagate, re-
taining that arbitrary shape we started with.

superposition

building a square wave



15.7 : Reflection and Transmission

(See the first video in the link given at the top of the first page.)

We’ll see more on this later, but what happens to a wave that’s travelling down a string (or any
medium really) that is finite. Eventually we reach the end of the string (or other medium). What
happens there?

In strongly depends on the type of medium involves, but in the case of a transverse wave on a
string, then:

• If the string is locked in place and can’t
move, the wave shape ‘reflects’ but with an
inverted amplitude. A positive amplitude
(representing a displacement in one direc-
tion relative to the string) becomes a nega-
tive amplitude (a displacement in the oppo-
site direction) when the pulse ‘reflects’ from
the end.

• If the string is free to move, the pulse de-
flects that end of the string and reflects with
the same sign

What if the string is connected to another string
with a different µ? Maybe a string connected to
a metal wire? The tension will be the same in
each part of the ‘medium’ but if µ is different then
v =

√
FT/µ will be different.

In this figure a ‘light rope’ is connected to a ‘heavy
rope’ (the higher µ will mean a slower v for the
wave). In this case, part of the wave reflects (and
flips sign) and part continues into the new medium
(but with a different amplitude and wave speed).



15.8 : Interference

The wave equation tells us that multiple waves can be present in a medium simultaneously and they
all behave independently of each other. In the left figure below, we have a positive pulse travelling
to the right and a negative pulse travelling to the left. They pass through one another (and at
one point they appear to have cancelled each other out, but at that point the string may have 0
displacement but the (tranverse) velocity and acceleration along the string isn’t zero.

On the right, we see how the two pulses (both positive this time) combine to create an extra high
amplitude the instant they’re both passing through the same point.

Superposition

DIGRESSION: This effect can cause unexpected behavior in structures. If one component of a
structure fails, a statics analysis might show that the new configuration is still stable (all the
tensions and stresses will be different, but still may be within the tolerances of the components
creating the structure). The problem is that the failure would have produced ‘waves’ of changes in
tension that are propagating through the structure, and these waves can constructively interfere with
one another and yields much higher displacements (and hence tensions) briefly. Statics programs
can’t do these simulations so won’t be able to alert the user to the possibility of this type of failure
in the structure.



15.9 : Standing Waves : Resonance

We know the wave equation is linear, so suppose we have two identical waves (same wavelength and
frequency) travelling in opposite directions through some medius:

• Wave travelling in +X direction: D1(x, t) = A sin (kx− ωt)

• Wave travelling in −X direction: D1(x, t) = A sin (kx+ ωt)

The complete wave then would be: D = D1 +D2 = A(sin (kx− ωt) + sin (kx+ ωt))

Let’s expand out those sines though:

Sine of sum of angles: sin (A±B) = sinA cosB ± cosA sinB so this becomes:

D(x, t) = A[(sin (kx) cos (ωt)− cos (kx) sin (ωt)) + (sin (kx) cos (ωt) + cos (kx) sin (ωt))]

Combining terms: D(x, t) = 2 sin (kx) cos (ωt)

Here’s a plot of a particular standing wave. Technically
this is still a ‘wave’ since it’s a solution to the wave
equation but it’s actually TWO identical waves pass-
ing through each other in opposite directions. If we
look at the spatial part of this ‘wave’, it’s amplitude
is ZERO (called a NODE) anywhere that kx = Nπ or
x = Nπ/k but k = 2π/λ so these nodes occur where
x = (Nπ)(λ/2π) = N(λ/2). The nodes are located ex-
actly ONE HALF λ apart from one another.
If we look at the time part, the amplitude at any point
x is bouncing up and down with an angular frequency of
ω which means it’s oscillating at the same frequency (or
period) as the underlying waves.

Now here’s where the magic comes in! Since the points
where x = N(λ/2) always have a displacement of ZERO,
what if we actually lock down the medium (string) at
those points?
If the locked-down points are some distance L apart from
one another, then the standing waves that will ‘fit’ in this
distance are those where the nodes happen to fall exactly
that distance apart from one another.
Top figure : the nodes are L apart, so L = (1)λ

2

Middle figure : here we have two nodes that are L apart,
so L = (2)λ

2

Bottom figure : here we have three nodes that are L
apart, so L = (3)λ

2

superposition



Rearranging those equations, the standing waves will be of the form: λ = 2L
N

Now v = λ/T = λf or f = v/λ so let’s rewrite that in terms of frequency: fN = N v
2L

This string will vibrate at various integer multiples of the frequency f1 = v
2L

which is called the
fundamental frequency of the string.

This collection of patterns (standing waves) is commonly referred to as the normal modes of
oscillation of the medium. The medium can vibrate at these specific frequencies easily. Any other
frequencies, representing wavelengths that don’t ‘fit’ in the length of the medium, will quickly die
out.

NOTE: with stringed and wind instruments, the normal modes are basically integer multiples of a
‘fundamental’ (lowest) frequency of vibration. Other objects (baseball bats, wine glasses, ...) can
also have normal modes but the frequencies typically aren’t simple integer multiples of the lowest
frequency.

Piano string example (from the book, but more accurate numbers...)

On an 88-key piano, key number 28 plays a ‘C’ note with a frequency of 130.813 Hz. Suppose this
wire has a length of L = 1.10 m and a mass of M = 9.00 grams. How much tension must this
string be under in order to produce this frequency as it’s fundamental? What other frequencies will
this string vibrate at?

f1 =
v
2L

so v = (f1)(2L) = (130.813 s−1)(2.20 m) = 287.7886 m/s but v =
√
FT/µ so FT = v2µ =

(287.7886 m/s)2(0.009 kg)/(1.10 m) = 677.64 N .

When we hit this wire, it will most likely vibrate in it’s fundamental but other standing waves with
higher frequencies will also exist. fN = N v

2L
so these other frequencies are all integer multiples of

the fundamental:

• f2 = 2f1 = 261.626 Hz (called C4 or ‘middle C’ on the piano)

• f3 = 3f1 = 392.439 Hz (G4)

• f4 = 4f1 = 523.252 Hz (C5)

• ... and so on ...

All stringed instruments vibrate at multiple frequencies (and we’ll see the same occurs with wind
instruments). Electronic instruments that attempt to simulate actual strings need to account for
that.

Note that for vibrating strings: f1 =
v
2L

with v =
√

FT/µ so f1 =
1
2L

√
FT

µ

In the case of a guitar, the 6 strings span frequencies from about 82 Hz to 330 Hz (a factor of a
little over 4) and they’re all the same length, so this range of frequencies is created by varying the
tension in each string and the material used (the µ) for each string.

With pianos, the 88 strings span frequencies from 27.5 Hz to 4186 Hz (a factor of over 150!) and
that’s too much of a range to achieve just varying the tension and string type - the length of the
string also varies considerably, varying from about 5 cm for the highest frequencies up to well over
a meter for the lowest frequencies.



We’ll see more of this in the next chapter, but these normal modes have TWO naming conventions
attached to them.

Normal Modes in other Objects

Here are some interesting links (with animations) showing the ‘normal mode’ shapes and frequencies
for:

• Actual bat : https://www.youtube.com/watch?v=5F3Q5ErEcfg (from the PhysicsEvery-
where channel)

• Wood and metal baseball bats : https://www.acs.psu.edu/drussell/bats/batvibes.html

• An empty beer bottle :
https://www.acs.psu.edu/drussell/Demos/BeerBottle/beerbottle.html

• Drum head : https://www.youtube.com/watch?v=v4ELxKKT5Rw

15.10* : refraction
15.11* : diffraction

(There’s a whole chapter on each of these topics later, so we’ll skip this for now.)
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