
PH2233 Fox : Lecture 07
Chapter 16 : Sound

16.1 : characteristics of sound

• Sound is a longitudinal wave, commonly propagating through air (any gas really) or water (or any
liquid). Pretty much any P-waves can be considered ‘sound’ waves though.

• Speed of sound : from the previous chapter (for gasses and liquids) v =
√

B/ρ where B is the bulk
modulus of the medium and ρ the volume density.

• In gasses and liquids, the density can change with temperature (especially with gasses), so the speed
of sound will vary. (thermodynamics: PV = nRT ). Approximate speed of sound in air (for ‘human’
range of temperatures anyway):

v ≈ (331 + 0.60T ) m/s where T is the temperature in deg C.

• Loudness : related to the intensity of the waves (twice the intensity ‘sounds like’ twice as loud, but
our hearing is not very linear)

• Pitch : the frequency

• Range of human hearing : roughly 20 to 20,000 Hz.

• Ultrasound: f above 20,000 Hz

• Infrasound: f below 20 Hz (can have health effects)

Typical Audio Sensor in mammals

Audio Range and Sensitivity decreases with age



Speed of Sound in Air

If we look at dry air at standard pressure (1 atmo-
sphere), the speed of sound can vary significantly.

On Earth, the lowest recorded temperature was
T = −89.2oC (about −128oF ) in 2011 in Antarc-
tica. The highest recorded temperature was
+56.67oC (about 134oF ) in 1913 in California in
the aptly named ‘Furnace Creek’ area.

Over that range, the v ≈ (331 + 0.60T ) m/s ap-
proximation is quite good, so we’ll be safe using
it for most scenarios we’ll encounter.

Example : The flash from a lightning strike travels at the speed of light; the sound from the thunder
travels at the speed of sound. If we are exactly one mile away from the strike, how many seconds later
will we hear the sound?

• Coldest place on earth: v = 331 + (0.6)(−89.2) = 277 m/s so t = d/v = (1609 m)/(277 m/s) =
5.8 sec.

• At STP (T = 20o C): v = 331+(0.6)(20.00) = 343 m/s so t = d/v = (1609 m)/(365 m/s) = 4.7 sec.

• Hottest place on earth: v = 331+(0.6)(56.67) = 365m/s so t = d/v = (1609m)/(365m/s) = 4.4 sec.

Speed of Sound in Water

Unlike the situation above, the
speed of sound in water varies much
more with temperature than the
speed of sound in air over the range
of temperatures we’ll likely be in-
terested in. This variation is some-
thing that sonar systems do need to
account for.

Speed of Sound in Water (at standard pressure)



16.2 : mathematical representation of longitudinal waves

We’ve been using the form D = A sin (kx− ωt) which describes the displacement of molecules in the
medium as the wave passes by.

Sound is a longitudinal wave, meaning the displacement is in the same direction as the wave is travelling.
The molecules in the medium (whether gas or liquid) get alternately compressed and rarified as the wave
passes through a given location.

Suppose we have a continuous sine wave displacement function and see what effect it’s having on the
molecules. We’ll arbitrarily pick some time and call it t = 0 so the longitudinal displacement of the
molecules will be D(x) = A sin (kx) as shown here.

The top graph shows what the displacement of a molecule at that location would be at this moment in
the wave’s travels.

Look at the point labelled λ/4 : molecules just
to the left of that point have a positive displace-
ment which means they’ve moved to the right (the
+X direction). Molecules just to the right of that
point have a negative displacement which means
they’ve moved to the left. The net result is that
molecules are ‘bunching up’ at that point, result-
ing in a higher pressure.
Now, look at the point labelled 3λ/4. Here, the
molecules are doing the opposite. Those just to
the left of that point have D < 0 so they’ve moved
to the left. Molecules just to the right of that
point have D > 0 so they’ve moved to the right.
Here, they’re ‘thinning out’, resulting in a lower
pressure.

This is reflected in the lower part of the figure showing the pressure as a function of position at this
particular snapshot in time.

Here we look at a Gaussian-shaped wave shape
that’s passing through the medium. The dots
along the X axis are the original locations of a few
molecules, and the dots below that show where
they’ll be at this instant due to the wave: again,
the wave we’ve been writing as a displacement
is resulting in a related pressure wave. As the
displacement shape propagates at some velocity v
through the medium, the corresponding pressure
changes do the same.



Relating Displacement to Pressure Directly
Consider a little infinitesimal cylinder of air of some area S and
length ∆x. At a particular snapshot in time, the wave causes the
left end of this cylinder to move with a displacement of D(x),
while the right end of this cylinder will move with a displacement
ofD(x+∆x). The net change in the ‘length’ of this little cylinder
will be ∆D = D(x+∆x)−D(x).
That means that the volume of the cylinder has changed, and
we have a relationship between pressure changes and volume
changes: ∆V = − 1

B
V∆P so this gives us a path to turn the dis-

placement function (how individual molecules are being affected
by the wave) to the pressure fluctuations that are also connected
to the wave.

Now, ∂D
∂x

= lim
∆x→0

D(x+∆x)−D(x)
∆x

which means we can write ∆D = ∂D
∂x

∆x.

Volume change will be the area times the change in D from one end to the other, so ∆V = S∆D and using
what we just found, we can write this as: ∆V = (S)(∂D

∂x
)∆x.

Now, (S)(∆x) is just the original volume of this little cylinder, so making that substitution:

∆V = V ∂D
∂x

or ∆V
V

= ∂D
∂x

From the definition of the bulk modulus for a gas or liquid: ∆V
V

= − 1
B
∆P

Combining those and rearranging terms: ∆P = −B ∂D
∂x

. That’s the relationship we were looking for.

Given some displacement wave function D(x, t), we can immediately find the corresponding pressure
wave function related to this wave.

Using D(x, t) = A sin (kx− ωt) (our travelling sine wave) we find that the pressure wave (as a function

of x and t) is: ∆P = −BAk cos (kx− ωt)

These figures show the molecular displacement
and corresponding pressure change at some snap-
shot in time.

The top figure shows the molecular displace-
ment, with amplitude A.

The bottom figure shows the corresponding pres-
sure fluctuation ∆P (high or low, relative to
the ambient pressure present). The amplitude of
these fluctuations will be ∆Pmax = BAk where
B is the bulk modulus of the medium, A is the
molecular displacement amplitude, and k is the
wave number k = 2π/λ.

Note that since the pressure wave is so closely
connected to the displacement wave, they’ll both
have the same wavelength, frequency, and wave
speed.



The pressure will fluctuate between ±BAk so the amplitude of the pressure fluctuations is usually written
as ∆Pmax = BAk

Using v =
√

B/ρ and k = ω/v = 2πf/v we can produce some other useful relationships:

∆Pmax = BAk = ρv2Ak = 2πρvAf

We can also morph the intensity equation we had earlier into a form relating intensity to the pressure
fluctuations. Combining ∆Pmax = 2πρvAf and the intensity equation: I = 2π2ρvA2f 2 yields:

I = (∆Pmax)
2/(2vρ) (bypass worrying about f in this form)

Speaker Example Redux

Earlier we looked at a 40 W speaker putting out a pure tone of f = 1000 Hz. In the ch15-lecture05
pdf example I had the speaker only putting out sound ‘ahead’ of the speaker, representing a quarter of a
sphere, but in class I assumed an idealized omnidirectional speaker, so that’s what we’ll do here too.

At r = 2 m from the speaker, the 40 W of sound is being distributed over an area of S = 4πr2 = 50.265 m2.
The intensity then is I = P/S = 40/50.265 = 0.79577 W/m2. (We’ll see later this is likely painfully
loud.)

In the previous chapter we related the intensity to the displacement amplitude: P = 2π2ρSvf 2A2 or
I = P/S = 2π2ρvf 2A2. At STP, the air density is about ρ = 1.2 kg/m3 and v = 343 m/s and here
f = 1000 Hz, so we find that A = 9.897× 10−6 m or 0.009897 mm (about 0.01 mm).

What pressure fluctuation does this represent?

• ∆Pmax = BAk where B = 1.42×105 N/m2. We’ll need the wavenumber. One path is v = ω/k so k =
ω/v = 2πf/v = (2)(π)(1000)/(343) = 18.318 m−1 so ∆Pmax = (1.42× 105)(9.897× 10−6)(18.318) =
25.7 N/m2.

• A simpler path is: I = (∆Pmax)
2/(2vρ) where I = P/S = 0.79577W/m2 (found above). Rearranging:

∆Pmax =
√
2vρI =

√
(2)(343)(1.2)(0.79577) = 25.6 N/m2.

(The second one relied in fewer previous calculations, so it’s probably ‘better’.)

That sounds like a lot of pressure, but it really isn’t.

Compare to atmospheric pressure : the weight of the atmosphere pushing down on us creates an
ambient pressure called ‘1 atmosphere’ or 1 ATM and that’s about about 14.7 pounds/in2 or 101, 325N/m2.
(Note: the units of N/m2 is also called a pascal.)

So, our (roughly) 25.6 N/m2 pressure represents a tiny deviation (about 1 part in 4000) on top of the
normal atmospheric pressure we’re already under.

Force on the Eardrum : A typical adult eardrum is roughly a circular disk around 8 to 10 millimeters in
diameter, so let’s say a radius of 5 mm = 5× 10−3 m. That’s a surface area of S = πr2 = 7.85× 10−5 m2.
The force on the eardrum will be the pressure times the area, so this painfully loud sound is only exerting
a force of (force) = (force/area)× (area) = (25.6 N/m2)(7.85× 10−5 m2) = 2× 10−3 N .



16.4 : Sources of Sound

Vibrating Wires/Strings : quick review
We saw last time that two identical waves travelling in
opposite directions can create standing waves and one
scenario where these appear is in vibrating strings or
wires, which appear in stringed musical instruments.
These standing wave patterns imply that the length of
the string is some integer multiple of the wavelength of
the waves: L = N(λ/2) which means that only select
wavelengths will ‘fit’ on the wire - wavelengths such that:

λN = 2L
N

with N = 1, 2, 3, ...

Since v = λ/T = λf that implies that the wires vibrating in these modes represent frequencies of:
fN = N( v

2L
) for n = 1, 2, 3, · · · .

where v =
√
FT/µ (the tension in the wire divided by it’s mass-per-length).

The frequencies are all integer multiples of the wire’s lowest frequency (called the fundamental).

An Old Test Problem : The spokes in a bicycle
wheel need to be adjusted to the proper tension. One
way bike shops do this is to bang on each spoke and
check what frequency of sound it emits. If the note is
too low or high, they’ll adjust the tension accordingly.
Suppose we have a spoke that is 26.2 cm long and made
of 15-gauge stainless steel wire (which means it has a di-
ameter of 1.8 mm and a density of 8000 kg/m3. What
spoke tension is needed so that, when vibrating at its fun-
damental frequency, it produces sound with a frequency
of 440 Hz?

1. (20) Tension = N

This ‘wire’ will vibrate at frequencies of fn = n( v
2L
). The bike spoke is vibrating at it’s fundamental

(n = 1) so here f1 =
v
2L
. Here then, 440 = v

(2)(0.262)
so v = 230.56 m/s is the wave speed on this wire.

The wave speed v =
√

FT/µ and we know v and can find µ so FT = v2µ.

The mass of the wire will be its density times its volume. The wire is essentially a long thin cylinder
with L = 0.262 m and d = 1.8 mm so r = 0.9 mm = 0.9 × 10−3 m. The cross-sectional area will be
S = πr2 = 2.54469 × 10−6 m2 so we have a volume of V = (S)(L) = 6.667 × 10−7 m3 and a mass of
M = ρV = 5.3336× 10−3 kg and finally a mass per length of µ = M/L = 2.036× 10−2 kg/m.

Finally then FT = v2µ = (230.56 m/s)2(0.02036 kg/m2) = 1082 N .

(That sounds high but apparently typical tensions range from 980 to 1200 Newtons. Apparently some
spokes are actually hollow to reduce the total weight of the bike. That would make µ (the mass/length)
value smaller which would reduce the tension FT = v2µ.)



Vibrating Air Columns

The same standing-wave situation can occur with pressure waves, but figuring out what patterns of waves
have to ‘fit’ in a given length is slightly more tricky.

Open Pipe : Consider a hollow tube, open at both ends as shown in the figure below. The air
molecules at each end can move left or right in the figure - there’s nothing stopping them from doing so.
The important figure is on the right though where we look at what patterns of pressure fluctuations are
‘allowed’.

At an open end, the air in the tube is basically in contact with an infinite reservoir of air where ∆P = 0
so the standing wave patterns will be those wave shapes where a pressure node exists at each end of the
tube.

Focusing on the right side, this works if the length of the tube is any integer multple of λ/2 so that each
end of the tube can be a ‘pressure node’.

That’s the same ‘pattern’ we had with the transverse standing waves on a wire, so we end up with the same

equations for the standing wave frequencies and wavelengths: λN = 2L
N

and fN = N v
2L

for N = 1, 2, 3, ...

and where v is the speed of sound in the medium.



Example
(a) How long would an organ pipe (open at both
ends) need to be to resonate at middle C (a fre-
quency of f = 261.626 Hz)?

fn = n v
2L

and if this is the fundamental frequency
of the pipe then f1 =

v
2L
.

The speed of sound at 20o C is v = 343 m/s so
rearranging:
L = v

2f1
= 343 m/s

(2)(261.626 s−1)
= 0.6555 m.

(b) Suppose it’s 38oC (about 100oF ) in the room.
What frequency will the pipe produce?
v = 331 + 0.6T = 331 + (0.6)(38) = 353.8 m/s
so f1 =

v
2L

= 353.8
(2)(0.6555)

= 269.9 Hz (about a half-

note too high).

This is an issue with all wind instruments. The frequencies they produce depend on the speed of sound,
which in turn depends on the temperature:

f1 =
v
2L

: the fundamental
v = 331 + 0.6T : speed of sound in m/s depends on temperature T (deg C here)

As the air inside the instrument changes temperature (either because the ambient temperature in the
vicinity is changing, or as the instrument reacts to the hot air being blown into it), it’s frequencies will
change. How is this addressed in actual wind instruments then?

In the case above (going from normal room temperature to an unpleasantly hot room) the fundamental
went from the required 261.626 Hz to an actual 269.9 Hz, which means the frequency increased by a
factor of 1.0316. If we increase the length by the same percentage, it will return to producing the correct
frequency. (I don’t know if pipe organs can be adjusted like this - maybe there’s a part of the pipe at the
bottom that can be adjusted in and out to change the length of the tube...)

A couple of students familiar with specific instruments provided the answer here. Since f1 = v
2L
, as v

changes, we can ‘fix’ the problem by changing the length of the pipe.

Length-adjustment components in wind instruments

TROMBONE : This is somewhat auto-
matic in the case of an instrument like a
trombone where the length of the pipe is
continuously variable by moving the slide
in and out. In the diagram on the left,
there’s also a section called the ‘tuning
slide’ which can be moved to alter the
length of the pipe so that a particular posi-
tion of the slide itself will always represent
a given note.



CLARINET (left figure) : the part labelled the ‘barrel’ can be rotated to alter the distance between the
two parts it’s connected to, resulting in changing the overall length of the pipe.

TUBA (right figure) : note the part labelled the ’main tuning slide’ which can be moved in and out to
alter the overall length of the pipe.

PIPE ORGAN (below) : Since our example involved a pipe organ I tried to find how those might be
adjusted but was not very successful. It looks like the top part of the pipes in this figure are different
pieces and maybe they can slide up or down to alter the fundamental frequency of the pipe but I’m not
sure that’s how it’s actually done.

It’s also possible that pipe organ is taken as the reference and the other instruments are then tuned to
match whatever frequency it’s producing.


