
PH2233 Fox : Lecture 08
Chapter 16 : Sound

Review:

Vibrating Strings : transverse waves on a medium with v =
√

FT/µ. Boundary conditions were that
the tranverse displacement had to be ZERO at the ends of the wire, meaning the length of the wire had
to be a multiple of λ/2. For a fixed length L, the wavelengths and frequencies of the standing waves had
to be:

λN = 2L
N

and
fN = N v

2L

where N = 1, 2, 3, ... and v =
√

FT/µ is the speed of the transverse waves travelling along the wire.

Open Pipe : standing longitudinal (pressure) waves are a solution to the wave equation but now the
boundary condition was that the ∆P needed to be ZERO at the ends of the tube since those two locations
were in contact with an essentially infinite reservoir of 1 ATM of pressure (i.e. a region where ∆P = 0).
This lead to the standing waves possible in a given length tube being such that:

λN = 2L
N

and
fN = N v

2L

where N = 1, 2, 3, ... and v is the speed of sound in the medium.

Since the speed of sound depends on temperature, the frequencies will all change as the temperature
changes. Wind instruments fix this by including components that can adjust the effective length of the
resonating chamber (i.e. the length of the pipe).

(Stringed instruments are also affected by changes in temperature but in a much more complicated way.
As the temperature goes up, the strings get longer so the tension is reduced, but the instrument itself
might expand somewhat compensating for that effect.)

Closed Pipe : What happens if we block off one (just one!) end of the pipe? In the figure below, we
block off the right end of the pipe but leave the left end open. The standing wave patterns that will ‘fit’
now have two constraints. At the open end, we need a pressure node since ∆P has to be zero there. On
the closed end though, we need a displacement node since the atoms there can’t move either left or right.
(They can’t move to the right since there’s a wall there; they can’t move to the left because that would
leave a vacuum behind and that would require a huge force.)



Figuring out the patterns that ‘fit’ (satisfy our
boundary conditions) is a little easier with these
figures. The top figure shows the displacement
wave pattern and the bottom figure shows the
pressure wave pattern.
We need standing waves with a pressure node (
∆P = 0 ) at the open end of the pipe (the left end
in the figure at the bottom of the previous page)
and a displacement node ( D = 0 ) at the closed
end (the right end of the figure on the previous
page).
So we’ll start by finding a location in the bottom
figure where ∆P = 0. Now mark all the spots
where D = 0 thanks to the top figure. How far
apart are those points from our ∆P = 0 location?
The first one that works is where L = λ

4
, the next

one occurs where L = 3(λ
4
), the next at L = 5(λ

4
)

and so on.

So what we’re left with is:
L = (1)(λ

4
)

L = (3)(λ
4
)

L = (5)(λ
4
)

and so on.

This pattern is different from what we had before. Basically we have:
λN = 4L

N
and

fN = N v
4L

where N = 1, 3, 5, ... and v is the speed of sound in the medium.

NOTE CAREFULLY that for this ‘closed pipe’ it’s only the ODD integers N that are being
used.

Example

(a) How long would an organ pipe (CLOSED at one end this time) need to be to resonate at middle C (a
frequency of f = 261.626 Hz)?

fn = n v
4L

(with just the odd n’s being used) and if this is the fundamental frequency of the pipe then
f1 =

v
4L
.

The speed of sound at 20o C is v = 343 m/s so rearranging:

L = v
4f1

= 343 m/s
(4)(261.626 s−1)

= 0.3278 m (note that’s exactly half as long as we got with the fully open pipe

before).



(b) If we now OPEN UP the closed end, what
frequency will this pipe produce?

With an open pipe, fn = n v
2L

so it’s fundamental
would be f1 = (1) 343

(2)(0.3278)
= 523.252 Hz which is

exactly twice what it was producing when closed.
An exact doubling of the frequency represents ex-
actly ONE OCTAVE so the pipe will now produce
another C note that’s one octave higher.

Pipe organs exploit this trick. Basically a set of
pipes when closed at one of their ends yields one
set of notes, but if if we open up that end we get
the next octave for free.

Example : Human Vocal Tract
The human vocal tract is a pipe that extends
about 17.2 cm from the lips to the vocal folds
(also called ‘vocal cords’) near the middle of your
throat. The vocal folds behave rather like the reed
of a clarinet, and the vocal tract acts like a closed
pipe.
Estimate the first three standing-wave frequencies
of the vocal tract. (The answers are only an esti-
mate, since the position of lips and tongue affects
the motion of air in the vocal tract.)
Inside this ‘pipe’ the air temperature is about
34oC. The typical human body temperature is
about 37oC but air only stays in the lungs long
enough to reach about 34o C.
v = 331 + 0.6T = 331 + (0.6)(34) = 351o C

For a closed pipe, the fundamental frequencies are given by fn = n v
4L

for n = 1, 3, 5, .... The lowest
frequency then would be f1 = (351 m/s)/(4 × 0.172 m) ≈ 510 Hz. The next two would be f3 = 3f1 ≈
1531 Hz and f5 = 5f1 ≈ 2551 Hz.

Try these sites to hear them:
https://onlinetonegenerator.com

https://onlinesound.net/tone-generator

https://www.szynalski.com/tone-generator

(The last one is good since you can enter particular notes too.)

Standing waves would form at these frequencies, meaning there will be specific spots in the vocal tract
where pressure antinodes would occur. At those points, the pressure would vary between ±∆Pmax, exerting
the largest changes in force on the throat lining, so those frequencies might be more painful for a singer to
maintain.

https://onlinetonegenerator.com
https://onlinesound.net/tone-generator
https://www.szynalski.com/tone-generator


Double-closed Pipe : the book doesn’t consider these, noting that ‘a tube closed at both ends, having
no connection to the outside air, would be useless as an instrument’ but that scenario still does exist. An
enclosed shower stall is a perfect example. In this scenario, the boundary conditions would be that we
need the displacement nodes to be at the boundaries of the chamber.

Consider a shower stall that is closed on all 4 sides (and on the bottom of course) but open at the top.
The stall is 1 meter wide, 1 meter deep, and 2 meters from the floor to the open part at the top. What
(audible) standing wave frequencies will exist in this geometry?

In the up-and-down direction, we have a closed pipe (i.e. one that’s open at one end and closed at the
other) so the frequencies will be fN = N v

4L
with N = 1, 3, 5, ....

While taking a shower the air temperature will go up, but let’s just keep the temperature at T = 20oC so
the speed of sound is just v = 343 m/s. Then fN = (N) 343

(4)(2)
= (N)(42.875 Hz), again with just odd values

for N . The standing-wave frequencies in this direction then would be 42.875 Hz, 128.625 Hz, 214.375 Hz,
300.125 Hz, and so on. If you’re singing in the shower, those frequencies would create standing waves and
sound particularly loud.

Let’s look in the left-right or back-front directions now. In those directions we have a double-closed
scenario. The displacement needs to be zero at each solid surface now. If L is the distance between the
two ends (the left wall to the right wall, or the back wall to the front ‘wall’ or door) then the D = 0 points
on the graph occur where L = (N)(λ/2) for all integer values of N (not just the odd ones), leading to
fN = N v

2L
with N = 1, 2, 3....

With L = 1 m between the opposing walls, we have fN = (N) 343 m/s
(2)(1 m)

= (N)(171.5 Hz) for N = 1, 2, 3...

yielding standing wave (i.e. louder) frequencies at 171.5 Hz, 343 Hz, 514.5 Hz, and so on.

For our particular geometry with the height of
the shower stall being exactly twice the width or
depth there aren’t any frequencies that appear in
both lists but between 20Hz and 20, 000Hz there
will be hundreds of frequencies creating standing
waves, so it sounds like everything is amplified
even though it’s really only those few hundred
special standing wave frequencies...)
This graph covers only up to 4500 Hz.



Playing an Instrument : Changing Notes
Whether we’re dealing with a stringed or wind in-
strument, we found that the instrument has a se-
ries of standing wave modes. Here’s another look
at a closed pipe (closed on the left end and open
on the right in this figure). Lots of modes can
exist. The fundamental will likely dominate but
some energy will be present in the other modes,
leading to the unique sound that each instrument
emits, even when nominally playing the identical
note.

How do we make an instrument play a different note? In all stringed and wind instruments, it’s done by
changing the length of the wire or pipe in some way.

Wind Instruments (flute) : the flute has a
set of ‘holes’ drilled into it. If we close off all
the holes, it produces the usual fundamental fre-
quency. What happens (top figure) we open up
the hole that’s in the middle? The existence of
that open hole means that ∆P = 0 at that point.
The fundamental is no longer a solution. The only
modes that can exist now are those that happen
to have a pressure node at that point.
Opening different holes eliminates other modes
and some other frequency will now be the lowest
the instrument can produce.

Stringed Instruments (guitar) : in the case
of stringed instruments, the (tranverse) displace-
ment of the string has to be zero at the two ends
of the string and it’s that length that determines
the frequency the string produces. If we alter the
length of the string, a different note is produced.
In some (most?) stringed instruments, this is
achieved by the user pushing down on the string
until it contacts a metal(?) bar. That effectively
causes a displacement node to move from the end
of the string to the location of this ‘fret.’ The new
length then yields a different note when played.



16.3 : Sound Intensity - decibels

The human ear is incredibly sensitive - it can detect intensities as low as 1× 10−12 W/m2 and as high as
1 W/m2, at which point the sound is becoming painful (and being exposed for extended periods of time
to that intensity can cause permanent damage).

This is such a large dynamic range, that intensity is often
converted into a logarithmic scale called the bel or more com-
monly the decibel.
The ‘bel’ is defined as log(I/Io) where Io = 1 × 10−12 W/m2

so sound that is just barely detectable is 0 bel and the pain
threshhold would occur at 12 bel. That range (zero to 12) is a
bit too coarse, so it’s much more common to see sound intensities
in units of deci-bels (tenth’s of a bel) giving us a range from 0
to 120.
Ultimately then we’ll define: β = 10log(I/Io) with β having
units of decibels or dB (even though technically it’s a unitless
quantity).
This table gives some typical sound scenarios with the actual
intensities in W/m2 and the corresponding decibel level.
Example : Let’s revisit the case of standing r = 2 m away
from a 40 W omnidirectional speaker. Last time we found
the intensity was I = P/S = 0.79577 W/m2. Converting to
decibels:

β = 10log(I/Io) = 10log( 0.79577 W/m2

1×10−12 W/m2 = 10log(7.9577× 1011) = 119 dB

Example : Impact of Doubling the Intensity

Suppose we crank up the speaker from 40 W to 80 W exactly doubling the intensity. What effect does
that have on the decibel level? Let’s just do this symbolically first:

βnew = 10log(2I/Io) = 10log2 + 10log(I/Io) = (3.01 dB) + βorig

Doubling the actual W/m2 intensity results in the decibel version going up by just +3.01 dB. Similarly
cutting the intensity in half would REDUCE β 3.01 dB. Basically each time we add 3 to the decibel number,
that represents a doubling of the underlying intensity, and each time the decibel number decreases by 3,
the intensity has dropped in half.

Arbitrary ratio: suppose I2 = (X)I1. Then:
β2 = 10log(I2/Io) = 10log(I2)− 10log(I0)
β1 = 10log(I2/Io) = 10log(I1)− 10log(I0)
β2 − β1 = 10log(I2)− 10log(I1) or simply:

∆β = β2 − β1 = 10log(I2/I1) = 10log(X)

Ratio Result
I2 = 2.0I1 β2 − β1 = 10log(2.0) = +3.01 dB
I2 = 0.5I1 β2 − β1 = 10log(0.5) = −3.01 dB

I2 = 10I1 β2 − β1 = 10log(10) = +10 dB
I2 = 0.1I1 β2 − β1 = 10log(0.1) = −10 dB

I2 = 100I1 β2 − β1 = 10log(100) = +20 dB
I2 = 0.01I1 β2 − β1 = 10log(0.01) = −20 dB

I2 = 1000I1 β2 − β1 = 10log(1000) = +30 dB
I2 = 0.001I1 β2 − β1 = 10log(0.001) = −30 dB



Example : Variation with Distance

I = P/S power per area, so if we’re twice as far away, what does that do to the intensity (in real terms,
and in dB)?

Assume the sound is spreading out spherically so the area will be S = 4πr2 meaning I proportional to
1/r2.

Suppose we measure the dB level at some distance ro. What will the intensity be exactly twice as far
away?

Iorig =
P

4πr2o
and Inew = P

4π(2ro)2
= 1

4
P

4πr2o
= 1

4
Iorig

Doubling the distance cuts the (actual W/m2 value of the) intensity down by a factor of 4. Each factor of
2 represents a drop of 3.01 dB so overall the intensity dropped by 6.02 dB.

Moving twice as far away reduces the intensity by about 6 dB, or the other away around: cutting the
distance in half results in the dB value increasing by a factor of about 6.

Example : cowbells : I used to live on Nash Street and during a football game I could often hear
the cowbells just barely. Let’s call that equivalent to a ‘whisper’, which is an intensity of β = 30 dB.

(a) How much ‘sound power’ was being produced by the cowbells?

For this we need to convert from the ‘convenience units’ of decibels to the actual physical units of W/m2

first:

β = 10log(I/Io) so I = Io10
(β/10) = (1× 10−12 W/m2)10(30/10) = 1× 10−9 W/m2.

Converting to power: I = P/S so P = (I)(S) = (I)(4πr2) = (1× 10−9 W/m2)(4π)(2000)2 = 0.050265 W .

(Now there were probably a thousand cowbells ringing at once, so each one would only be creating much
less than a milliwatt of sound power. It’s true that very little power is needed to create very loud sounds
but we’ll see later why this estimate is wrong.)

(b) How loud (in dB) would this sound be to players on the field? The thousand cowbells are all at various
distances from the players at the center of the field, but let’s use 50 m for a ‘reasonable’ average distance.

We can shortcut this one and do it separately from the first question. If the player is 50 meters from the
source, that means they’re 40 times closer than me. We know that each doubling of distance cuts the
intensity down by a factor of 6.02 dB or each halving of the distance raises the intensity by that much.
How many doublings are in a factor of 40?

2x = 40 and taking the natural log of both sides: xln(x) = ln(40) so x = ln(40)/ln(2) = 5.32. That many
doublings means a (5.32)(6.02 dB) = 32 dB difference. If it sounds like 30 dB at my location, it sounds
like 30+ 32 = 62 dB on the field. Looking at the table above, that should be like somebody talking about
a half-meter away. (That seems way too low, and we’ll see why..)

Let’s check that with an actual W/m2 approach. We found the total ‘sound power’ was 0.050265 W so if
the listener is only 50 m away from the source(s), I = P/S = (0.050265 W )/(4π(50)2) = 1.6×10−6 W/m2.

Converting that to decibels: β = 10log(I/Io) = 10log(1.6×10−6

1×10−12 ) = 62 dB.

(continued...)



Why is this wrong? I suspect that to the players on the field, thousands of ringing cowbells probably
sounds a lot louder than just being near someone talking. What’s missing here is that I’m not accounting
for how much sound loses intensity just by passing through the air, an effect called attenuation. As
a pressure-wave moves through a medium, it’s alternately pushing atoms closer together (which raises
their temperature) and then farther apart (decreasing their temperature). Thermodynamics is never 100%
reversible, so there’s always some loss of energy involved as a pressure-wave passes through a medium. This
attenuation gets worse as the frequency goes up, the temperature goes up, and as the humidity goes up,
so there’s no good ‘rule of thumb’ for this. On a warm day in Starkville for mid frequencies, it’s roughly
0.015 dB/m, so 2000 m away from the stadium, this would contribute an additional 30 dB of loss. If there
were no losses due to this effect, the sound at my house would have been at 60 dB instead of just 30 dB,
so adjusting the calculation above, the sound on the field would be not 62 dB but 92 dB (‘truck traffic’
according to Table 16-2). That’s a bit more likely.

This figure shows the attenuation
(in dB per kilometer) in air at
20o C for various humidity values.

Note that higher frequencies are af-
fected much more than lower fre-
quencies.

We’ll work through a subset of these in class, but I’ll leave them all here in the notes.

Example : Pain Threshhold Pressure Amplitude : What pressure amplitude ∆P does the ‘pain
threshhold’ represent?

I = (∆Pmax)
2/(2ρv) so ∆Pmax =

√
2ρvI =

√
(2)(1.2)(343)(1) = 28.7 N/m2 and when we’re recording

pressures, the units of N/m2 is usually called a ‘Pascal’ (Pa).

You’ll often see this quoted as being about 30 Pa. In any event, standard atmospheric pressure here at
the surface is about 101, 000 Pa so this painful level of sound is still a minute fraction of one atmosphere.



Example : Jet Engine : For a particular jet engine, a noise level of 140 dB was recorded at r = 30 m
from the engine. How much total ‘sound power’ is the engine emitting?

I = P/S so P = (I)(S). If the sound is omnidirectional (which it isn’t, so this will be an overestimate)
P = (I)(4πr2).

From the decibel table, 140 dB represents I = 100 W/m2, so at 30 m we have about P = (I)(4πr2) =
(100)(4π)(30)2 = 1.13× 106 W or about 1.13 MW of sound power.

A single engine on a Boeing 777 produced 75 MW of power total, so this is about 1.5%.

Extending the cowbell example, MSU is about 30 km from the GTR airport. Roughly how loud would
this jet engine be here on campus?

First, 30 km is 1000 times farther away, and 210 = 1024 so apparently this is almost exactly 10 doublings
and each doubling cuts the intensity by 6.02 dB, so that extra distance would reduce the sound level from
140 dB to 140− 60 = 80 dB. Looking at Table 16-2 on a previous page, that’s described as ”busy street
traffic” and in fact we rarely hear anything taking off that far away.

If we include the effect of attenuation (the absorption of some of that sound as it passes through air), if
we lose 0.015 dB/m then over a 30 km distance we’d lose (0.015)(30000) = 450 dB, so now we’re down
to 80− 450 = −370 dB, and we can’t hear anything below 0 dB, so we definitely shouldn’t hear anything
taking off from GTR.

Reality Check : The jet engine is not putting out sound equally in all directions, so if the back end of
the jet is pointing our way the initial intensity would be much larger and the attenuation coefficient for
lower frequencies is much lower (maybe 2 dB/km or 0.002 dB/m). On rare occasion, we can just barely
hear this sound (at least the lower frequency rumbling).

Molecular Motion : What is the displacement amplitude of individual air molecules if a sound is at
the very lowest end of human hearing? (I.e. β = 0 dB.)

Looking at the table, this represents an actual intensity of 1× 10−12 W/m2.

I = (∆Pmax)
2/(2ρv) so ∆Pmax =

√
2ρvI = 2.878× 10−5 N/m2

If we want to convert intensity to amplitude we’ll need a frequency, so here we’ll punt and use f = 1000 Hz.

∆Pmax = 2πρvfA so 2.878×10−5 = (2)(π)(1.2)(343)(1000)(A) or A = 1.1×10−11 m or about 0.1×10−10 m.
I did that conversion because 1×10−10 m is about the diameter of an atom, so at this extreme end of what
we can hear, the molecules of air are only moving about a tenth of their diameter back and forth when
they run into the eardrum. (There are a lot of them doing so though, yielding a just-barely-noticeable
sound.)



Example : Earbuds (I) : how much power do earbuds need to put out to be painful?

The pain threshhold represents an intensity of I = 1 W/m2, so the total power hitting the eardrum (a
roughly circular disk of radius 5 mm) would be P = (I)(S) = (1 W/m2)(π0.0052) = 8 × 10−5 W or only
about 0.08 milliwatts.

With earbuds, nearly all the sound they produce makes it to the eardrum, so they only need to create
less than a tenth of a milliwatt of sound power. Assuming they’re pretty efficient at converting electrical
power into sound power, their batteries should last a very long time.

Example : Ear-buds (II) : Battery Capacity Needed

The Apple airpods pictured here allegedly can play music
for 6 hours on a single battery charge. Assuming an 80
dB sound level:

• How much power is the speaker putting out?

• How much energy (in Watt-hours) is the fully
charged battery storing?

Typical ear-bud batteries hold about 0.05 W*h of en-
ergy. Where is the rest of this energy going?

As in the previous ear-bud example, we’ll assume all the sound power being created by the speaker directly
hits our eardrum.

Converting from dB to W/m2: β = 10 ∗ log(I/Io) so I = Io × 10(β/10) = (1 × 10−12 W/m2) × 108 =
1× 10−4 W/m2.

Intensity is power per area: I = P/S so the sound power here is P = (I)(S) where S is the area of the
eardrum (circular membrane with a radius of about 5 mm) so:

(a) P = (0.0001 W/m2)× π(0.005 m)2 = 8× 10−9 W .

(b) Putting out that many Watts for 6 hours represents an energy of (8 × 10−9 W )(6 hours) or about
5× 10−8 W · h.

The battery allegedly stores 0.05 = 5 × 10−2 W · h of energy, so only about 1 part in a million of this
energy is getting converted into sound.

Is the system really this inefficient?

We’re missing a lot of other factors involved in this situation. For one, not all the power generated by the
speaker actually reaches our eardrum (the insides of our ear absorb some of it).

The most important missing factor is that these earbuds are wireless, using Bluetooth radio to receive
signals from another device (phone usually) and that process consumes most of the energy here.



Example : Tornado Warning Siren :

The specs for a particular air-raid siren (used more for tornado warnings) are listed as producing 138 dB
of sound at a distance of 30 m from the siren. It’s also claimed that this siren is powered by a 180 hp
diesel motor. Let’s see if the given data is consistent.

β = 10log10(I/Io) so I = Io10
(β/10)

I = (1× 1012)10(138/10) = 101.8 = 63.1 W/m2.

If the ‘speaker’ is omnidirectional, spreading the sound out uniformly in all directions equally, S = 4πr2,
so P = IS = 714, 000 W . Now 746 W is 1 hp so this is 960 hp.

That’s much higher than the 180 hp motor that was mentioned. What went wrong?

If we look at the design of this ‘speaker’, it’s clearly NOT omnidirectional and is fact designed to send
sound out in a cone. S is not the entire spherical surface, but just a small fraction of that. If it’s just a
fifth of the sphere, we’re down to 180 hp.

Tornado Warning Siren

The figure on the right is essentially a polar plot showing how the intensity varies with angle, where in
this plot the siren is aimed to produce its full intensity at 90o (i.e. probably pointing straight North). If
we move roughly ±45o away from that direction though (θ = 90o ± 45o in the figure), the intensity has
dropped in half, and by θ = 90o ± 60o relative to north, the intensity is mostly gone.

We’ll see plots like these in the context of wireless router antennas later in the course.


