
PH2233 Fox : Lecture 09
Chapter 16 : Sound

16.6 : Interference of Sound Waves (beats)

Suppose we have two sound sources that are slightly out of tune, producing frequencies that are not quite
the same. What will we hear?

Let’s write the first source as D1 = A cos (ω1t) and the second as D2 = A cos (ω2t) (where ω = 2πf).

The combination of these will yield: D = D1 +D2 = A cos (ω1t) + A cos (ω2t)

A useful trig identities (there was a reason you learned these after all!) is:
cos (A) + cos (B) = 2 cos (A+B
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We can thus write the combined time series as:
D = 2A cos (ω1+ω2)t

2
× cos (ω1−ω2)t
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The figure below shows two such cosine waves with frequencies of f = 50 Hz and f = 60 Hz and the
result of combining them. At some times, the two waves are exactly in phase yielding a double-amplitude
signal but at other times the two waves are exactly out of phase and end up cancelling each other:

See https://onlinetonegenerator.com/ again here. There are two places where you can create two
different frequencies and hear the result: the Binaural Beats tab lets you pick two frequencies, and the
Multiple Tone Generator can do 2 or more and you can turn each on and off easily. If the notes are
‘close enough’, our auditory system hears them as a single average frequency with a modulated amplitude.
At some point though as the two frequencies get far enough apart, we start hearing them as two distinct
notes.

 https://onlinetonegenerator.com/ 


Here’s a better view of what’s going on. The two nearly-equal frequencies combine to produce a tone that
has the average of those two, but where it’s overall amplitude is changing at the beat frequency. The solid
line shows the cosine term that’s creating this ‘envelope’ and notice that we perceive amplitude nodes at
twice that frequency.

Essentially when the two sounds have frequencies that are similar, we hear this as a sound a frequency of
favg = (f1 + f2)/2 but whose amplitude is modulated at a frequency of fbeat = (∆f/2)× 2.

That final ’times 2’ is because we can’t hear PHASE. We hear that amplitude modulation going through
highes and lows at TWICE the nominal beat frequency. The high amplitude points occur twice in each
period of the modulating cosine.



Example : musical instruments out of tune

Suppose a violin is playing a middle C at the correct frequency of f1 = 261.6256 Hz but a wind instrument
that’s warmed up a bit is attempting to produce the same note but is actually 2% higher thanks to the
higher temperature so f2 = 266.858 Hz. (We’ll see next that one full note represents a change in frequency
of about 6%, so these instruments are already pretty close, with the wind instrument being ‘off’ by just a
third of a full note.

These notes would combine to produce a sound at favg = f1+f2
2

= 264.242 Hz but with a beat frequency
of fbeat = f2 − f1 = 5.23 Hz.

The player of the wind instrument starts making adjustments to bring their instrument into tune with the
violin. As they get closer to being in tune, what happens? Suppose the wind instrument is almost there,
being 0.2% too high now, so they’re producing f2 = 262.149 Hz. Together, the instruments will produce a
sound with favg = 261.887 Hz and the beat frequency is now fbeat = f2 − f1 = 0.523 Hz (about 2 seconds
between the high amplitudes).

The closer they get, the farther apart the amplitude modulations become. Presumably there’s some rule
of thumb they use to decide they’re ‘close enough’. Even this close may not be close enough though, if
there’s a passage in the music where these two instruments would be holding notes for seconds at a time.

Try this with https://onlinetonegenerator.com.

In the ‘equally temperated chromatic scale’ there
are 12 steps (notes) in each octave with each step
produced by multiplying the previous by a con-
stant factor r.

One octave means an exact doubling of the fre-
quency.

Since it takes 12 steps to exactly double the fre-
quency, r12 = 2 so r = 2(1/12) = 1.059463....

The frequency of each ‘note’ is almost exactly 6%
higher than the previous note in the scale.

For stringed instruments, we found that the fundamental frequency was f1 = v
2L

where v =
√
FT/µ.

If the frequency is 2% too high (like the example above), we can’t alter the length of the string so we need
to force the wave speed v to change by that percentage.

v =
√

FT/µ, so FT = µv2, meaning that the tension is proportional to the square of the wave speed.
Here, we need to reduce v by a factor 0f 0.98 so the tension must be reduced by a factor (0.98)2 = 0.96...
The 2% reduction in the frequency requires a 4% reduction in the string tension.

For wind instruments, we found that that the fundamental frequency was f1 = v
2L

where v is the
speed of sound in air. We can’t realistically adjust that, so we need to alter the length of the pipe.
Rearranging that equation, v = 2Lf1 so if we need to multiply f1 by 0.98, we can do that by multiplying
L by 1/0.98 = 1.020.... A 2% reduction in the frequency requires a 2% increase in the length of the pipe.
(Instead of the 4% change in the tension for the stringed instrument.)

 https://onlinetonegenerator.com 


16.7 : Doppler Effect

The upper figure below shows a stationary source producing some of some frequency f , and a stationary
listener. The sound source is creating travelling (pressure) waves heading off at vsnd toward the listener.
v = λ/T = λf so here the wavelength (distance from peak to peak pressure, say) will be vsnd/f meters.

What will the listener ’hear’? Waves of the given wavelength are arriving travelling at vsnd. Peaks are
hitting their eardrums every time one of the wave peaks arrives. At what rate are they arriving? f = v/λ
so they hear the same frequency that was emitted.

Now, what if the source is moving towards the listener? The source puts out a pulse and T seconds later,
that pulse has moved outwards a distance vsnd ×T . During that same time interval, the source has moved
forward a distance of vsrc × T where it now emits it’s next pulse.

Source moving towards Listener

The distance between each pulse (each peak in the pressure wave) is now (vsnd − vsrc)(T ), which means
the wavelength of the waves is now smaller than it used to be.

Peaks that far apart now arrive at the listener. They’re bunched up now though. The listener will hear a
higher frequency. f = v/λ in general, but now λ has been altered, so the listener will be hearing a different
frequency. Let’s call that f ′. Then:

f ′ = vsnd/λ = vsnd

vsnd−vsrc
1
T

But 1/T is just f (the frequency the SOURCE thinks it’s producing) so we can write this as:

f ′ = f vsnd

vsnd−vsrc
(source moving towards listener)

Example : Suppose the firetruck is emitting sound with a frequency of f = 1000 Hz and is moving at
20 m/s towards a stationary listener. The frequency heard by the listener will be: f ′ = (1000 Hz) 343

343−20
=

1061.92 Hz. (That’s a ratio of about 1.062 which is a littler more than one full NOTE on the western
scale.)



Source Moving Away from Stationary Listener : We can re-use the same figure as above but now
consider a listener that’s behind the source. The source puts out a pulse. Then T seconds (one period)
later, that pulse has moved outwards a distance vsnd × T (to the left). The source has moved farther away
to the right now though, a distance of vsrc × T when it emits it’s next pulse.

In this case, the distance between the pulses (or the peaks of pressure), which is the wavelength, has
increased. The distance between peaks is now (vsnd + vsrc)(T )

Carrying this through, the frequency heard by the listener will be:

f ′ = f vsnd

vsnd+vsrc
(source moving away from listener)

Looking at the firetruck travelling at 20 m/s again: f ′ = (1000 Hz) 343
343+20

= 944.9 Hz. (Again, about 6
percent lower, which is one NOTE lower.)

We can go through this process with a stationary source and moving listener, as well as situations where
both source and listener are moving and arrive at a general result:

f ′ = f · (v±vobs
v∓vsrc

) called the Doppler Equation

where:
v = sound speed
vobs = observer speed
vsrc = source speed.
Upper sign if moving towards.
Lower sign if moving away. (separate analysis for each term)

I’ll repeat a key word here: all those v variables are speeds and NOT velocities. The signs are taken care
of by the wording below the figure.

(Note I’ve dropped the subscript snd from the speed of sound term, and also changed from ‘listener’ to
‘observer’ which is the term the book uses.)

ALSO: this all assumes that the AIR (the medium supporting the waves) is NOT MOVING. If it is, we
need to move into a coordinate system that’s moving along with the air and then figure out what the
source and observer speeds are relative to the air.

EXAMPLE : Moving Source and Receiver

Suppose the firetruck is travelling to the right at 20 m/s and we’re in a car ahead of the truck and also
moving to the right but at just 10 m/s.

Here then, vsrc = 20 and vobs = 10 (remember, those are speeds and not velocities so they’re always positive
numbers no matter what direction anything is moving in).

vsrc sign : The source is moving TOWARDS the listener. TOWARDS means ‘upper sign’, so we’ll use the
-○ sign on the vsrc term.

vobs sign: The observer is moving AWAY from the source (or at least attempting to). AWAY means ‘lower
sign’ for the observer term which means -○ again, so:

f ′ = (1000 Hz) · 343−10
343−20

= 1030.96 Hz



Example : DOUBLE DOPPLER

Going back to the first example we did, we had the firetruck moving in some direction at 20 m, emitting
a f = 1000 Hz tone, which a stationary listener ‘heard’ as f ′ = 1061.92 Hz.

Suppose that ahead of the truck is some stationary flat surface that will reflect this sound back towards
the truck (the back of a large moving van maybe, or a flat wall, ...).

When this 1061.92 Hz sound waves hit the (stationary) wall, they’ll reflect back towards the truck at that
same frequency. Every pressure pulse hitting the wall becomes a pressure pulse reflected from the wall.

Now we have the firetruck travelling into these pulses. What frequency will someone in the truck here?

For this Doppler step, we consider the wall to be the source, which is stationary and emitting a frequency
of 1061.92 Hz.

The firetruck is now the ‘observer’ and they’re moving TOWARDS the source at 20 m/s.

In the Doppler equation then: f = 1061.92 Hz, vsrc = 0 and vobs = 20 and since the observer is moving
TOWARDS the source, we’d use the ‘upper sign’ on the vobs term in the equation:

f ′ = f · v±vobs
v∓vsrc

so here:

f ′ = (1061.92 Hz)343+20
343

= 1123.84 Hz.

What frequency would a person in the firetruck hear directly from the siren?

In that case, both vsrc = 20 and vobs = 20 and they’re actually not moving relative to one another so what
sign should we pick for the terms here?

Suppose the observer were moving some tiny ϵ faster than the source. Then the observer is moving ‘away’
from the source (lower sign on the vobs term) and the source is attempting to move towards the listener
(so upper sign on the vsrc term. Then:
f ′ = f · v±vobs

v∓vsrc
becomes:

f ′ = f 343−20
343−20

= f .

If we suppose that the observer is moving some tiny ϵ slower then the source, that would swap both signs
yielding f ′ = f 343+20

343+20
= f .

Either way, if the source and observer (listener) are moving in the same direction at the same speed, the
observer hears the source frequency unaffected.

Ultimately then, someone sitting in the firetruck would hear the f = 1000 Hz from the siren directly, plus
this 1123.84 Hz sound that bounced off the wall back towards them. Those frequencies are too far apart
to be perceived as an average-plus-beat frequency so the listener would just hear two distinct different
frequencies.



Interference: Constructive and Destructive (Introducing the idea here but we’ll have an entire
chapter on it later.)

Suppose we have two sources putting out the same frequency f that are separated by some distance. If
we stand at some other location, what will we hear?

Assuming the two sources are in phase with one another, the
sound will potentially travel a different distance from each source
to the listener, meaning the two sine waves will arrive at that
point somewhat out of phase, or shifted relative to one another.
If the shift works out to be an exact multiple of the wavelength of
the sound, the sine waves will arrive ‘in phase’ with one another
and the listener will hear a loud sound at that frequency. BUT,
if one signal arrives a half-wavelength out of phase with the
other, they’ll cancel each other out.
In this figure, we see that point C is exactly 5 wavelengths away
from source B, but exactly 4.5 wavelengths away from source
A. Sound from source A arrives a half wavelength out of phase
with the sound from source B and they’ll mostly cancel each
other out. (The sound from A is closer, so it’s amplitude will be
slightly higher than the sound from B, so they won’t completely
cancel each other out.) Interference from two sources

Suppose we’re in a room where the speakers are mounted on
the wall d = 2 m apart from one another. If we sit somewhere
equidistant from each speaker (i.e. along the midline coming
out perpendicular to the wall), then the distance from us to
each speaker is the same and whatever f is, the waves from
those two sources always arrive ‘in phase’ with one another and
we hear a nice loud sound.
What if we move a bit off to one side? Suppose we’re 4 m away
from the wall, directly in front of speaker A. At what frequen-
cies will constructive interference occur? (I.e. for what frequen-
cies will the distance difference be exactly an integer number of
wavelengths?
The distance from A to D is exactly 4 m; the distance from B
to D is

√
(2)2 + (4)2 = 4.472136 m, so speaker B is 0.472136 m

further away from us.
Remember v = λ/T = λf so λ = v/f .

Constructive and Destructive
Locations

If the wavelength is some multiple of that, the two waves arrive exactly in phase: 0.472136 = (N)λ =

(N)(343)/(f) or f = (N)(343)
0.472136

= (N)(726.5 Hz). At those frequencies the signals from the two speakers
arrive in sync with one another and constructively interfere, creating a sound with (about) twice the
amplitude.

If the distance difference happens to be an integer number of wavelengths PLUS ANOTHER HALF
WAVELENGTH, then destructive interference will occur and most of the sound at those wavelengths
will be cancelled out. That will occur where f = (N+0.5)(343)

0.472136
= (N + 0.5)(726.5 Hz). That occurs at

f = 363.24 Hz, f = 1089.73 HZ, f = 1816.2 Hz and so on.



Speaker Example : continued

Suppose our speakers are separated by 2 meters and we’re sitting 4 meters away along the perpendicular
bisector of the line connecting the two speakers.

The speakers are each playing a f = 262 Hz (middle C) tone in phase with one another.

How strong will the signal be if the listener shifts sideways a bit?

Let x = 0 be when the person is right on the mid-line, the same distance from each speaker. Then sound
travels exactly the same distance from each speaker to their ears and the waves will arrive in phase, leading
to a loud tone.

As they move in the +X direction (‘up’ on the figure), they’re getting slightly closer to the upper speaker
in the figure and slightly farther from the lower speaker in the figure.

When that distance difference equals exactly half the wavelength of the tone, the sound from the lower
speaker arrives exactly a half-wavelength out of phase with the sound from the upper speaker and they’ll
(nearly) cancel each other out.

Use that https://onlinetonegenerator.com website to play that frequency at home and scale all the
distance values based on the actual separation distance between your two speakers and see if you can
notice this effect. (It’ll be less pronounced in the real world because the sound from each speaker actually
takes many other paths from the speaker to your ears, bouncing off any smooth surfaces in the vicinity
like desktops, walls, and so on...)

https://onlinetonegenerator.com


Speaker Example: Far-field approximation

Suppose we’re very far away from the two speakers. In
that case, the paths from each speaker to where we’re
located are nearly parallel to one another. That let’s us
short-cut the ‘path difference’ part of the calculation. In
fact, the path difference will just be ∆s = d sin θ which
means we can find the locations (angles, really) where
constructive and destructive interference occur more eas-
ily:
CONSTRUCTIVE interference

d sin θ = mλ for m = 0, 1, 2, · · ·

If the path difference is exactly a multiple of λ PLUS AN
ADDITIONAL HALF WAVELENGTH, the two waves
arrive perfectly OUT of phase and cancel each other.
Mathematically we can write this as:
DESTRUCTIVE interference

d sin θ = (m+ 1
2
)λ for m = 0, 1, 2, · · ·

In the previous example the speakers were located d = 2 m apart. If they’re emitting a frequency of
f = 262 Hz, at what angles will constructive and destructive interference occur (when we’re far away)?

v = λ/T = λf so λ = v/f = (343 m/s)/(262 Hz) = 1.309 m.

Constructive interference : d sin θ = mλ for m = 0, 1, 2, · · · so here:
(2.0) sin θ = 1.309m

Rearranging we have: sin θ = 0.65458m.

• m = 0 yields θ = 0o

• m = ±1 yields θ = ±40.9o

• no other solutions

Destructive interference : d sin θ = (m+ 1
2
)λ for m = 0, 1, 2, · · · so here:

(2.0) sin θ = 1.309(m+ 1
2
)

Rearranging we have: sin θ = 0.65458(m+ 1
2
).

• m = 0 yields θ = +19.1o and m = −1 yields θ = −19.1o.

• m = 1 yields θ = +79.1o and m = −2 yields θ = −79.1o

• no other solutions

The main point here is that wherever you are, near or far, there are going to be some frequencies that are
extra loud and some that are extra quiet: except right along a line representing the perpendicular bisector
coming out from the midpoint between the two speakers. Always sit in the middle seat in a theater!


