
PH2233 Fox : Lecture 10
Chapter 32 : Light Reflection and Refraction

32.1 : the ray model of light

RAY vs WAVE models :

Consider our little spherical carbon nanotube speaker, putting out sound uniformly in all directions. The
left figure below shows these sound waves spreading out from the speaker. We can take a point on each
wave (where the pressure is equal to it’s maximum value, for example) and call that a wave front. These
waves are spreading spherically from the source so each sphere (each ‘wave front’) is perpendicular to the
radius vector from the source, and this vector perpendicular to the wave front is called a ray.

The figure on the right is a cross section through the left figure more clearly showing the ‘rays’ and ‘wave
fronts’ that describe how the sound is spreading out from the speaker.

We can analyze waves in two ways then: looking at the waves themselves (via the wave equation), or
following the rays since we know the wave fronts will be perpendicular to those rays.

Both approaches (models) have their uses.

Light can also be analyzed both ways. There is an underlying wave equation that connects electric and
magnetic waves travelling at the speed of light, and chapters 34 and 35 will focus on the wave model for
electomagnetic waves (light, x-rays, radio and TV waves, etc) but for the next two chapters we’ll focus
on the ray model, where we treat light as if it were made of tiny massless particles (photons) travelling
along the rays at the speed of light. (Sound and other P and S wave disturbances travelling through a
medium can also be treated as particles following raypaths, in which case these ‘particles’ are sometimes
called phonons.)

The fact that we’ll be focusing on these ‘rays’ (the nominally straight-line paths taken by a photon) leads
to this type of analysis being called geometric optics.



When we look at an object, how do we ‘see’ it?
Focusing on the ‘ray’ model, ambient light in the
room hits the object and is scattered in ‘all’ direc-
tions, with some small fraction of those photons
making it through our pupil to our retina.

Ray Model for Light (photons)

Where did the light illuminating the pencil come from? Some probably came directly from the lights
overhead, some probably came from the Sun, passed through a window, bounced off a wall, then maybe
bounced off a desk and someone’s glasses and ultimately reached the pencil, before finally reaching my
eye.

Let’s focus on these interactions: the ‘reflections’ that the photon underwent on it’s way to us.

32.2 : reflection : image formation by a plane mirror

The figure below shows a ray of light bouncing off a mirror. Consider a tiny particle bouncing off the
perfectly flat surface of a vastly heavier object. If there’s no friction present and we have a perfectly
elastic collision, look at the (vector) conservation of momentum where the only force acting on the particle
is perpendicular to the surface.

The only two solutions are that the particle either continues moving in the same direction, passing through
the surface, or it’s component of momentum normal to the surface gets reversed.

Photons are particles that carry momentum even though they’re massless and they behave the same way.
An X-ray photon (or one representing radio or TV frequencies) would pass through a sheet of paper as
if it weren’t even there. A photon of visible light encountering a smooth metal surface will ‘bounce’ as
shown here though.

The figure is annotated with some terms we’ll use to describe this effect. In particular note that the angle
of incidence and angle of reflection are measured relative to a line that’s normal (perpendicular) to
the surface at the point where the photon strikes the surface.



Most materials aren’t perfectly smooth or even
perfectly reflective, and incoming rays get scat-
tered in other directions. This is called diffuse
reflection.
The smoother and more reflective a surface is
though, the less the scattering is, ultimately yield-
ing specular reflection as shown on the right
below.
If we hit a sheet of paper with a laser, we can see
the bright spot from any direction (diffuse reflec-
tion).
If we hit an ideal mirror with a laser, the reflection
can only be seen from a ‘single’ angle.

DIFFUSE vs SPECULAR reflection

Example 32-1 Corner Reflector

A device that cleverly exploits specular reflection is a corner reflector. You’ve probably seen these at
night: little disks with jagged-looking surfaces that reflect headlights and are used to warn of obstacles
you might not be able to see directly (or denote driveway locations on dark roads).

Let’s start with a simpler geometry, as shown in the figure below. A photon strikes the horizontal surface
(let’s call that the X axis) making an angle of 15o relative to the surface, meaning an angle of incidence
of θ1 = 90− 15 = 75o. It reflects at θ2 = 75o.

The photon now hits the vertical (Y axis) part. Propagating angles, θ3 = 90− 75 = 15o and will reflect
at θ4 = 15o.

Note that this direction is exactly the same angle above the horizontal that the incoming ray was travelling
below the horizontal. The reflected ray is heading back parallel to the incoming ray, just in the exact
opposite direction.



Let’s extend this to a full 3-D corner reflector.
Note from the above figure than when the ray (i.e.
the photon) hit the mirror aligned with the X axis,
it’s vx didn’t change by it’s vy (the component of
velocity perpendicular to the surface) flipped its
sign.
Consider the vector v⃗ velocity of the photon.

1. Reflects off the XZ plane, resulting in:
vy being reversed.

2. Reflects off the YZ plane, resulting in:
vx being reversed.

3. Reflects off the XY plane, resulting in:
vz being reversed.

The net effect is that each component of the incoming v⃗ has now been reversed, resulting in the outgoing
ray having a velocity of exactly −v⃗ : i.e. it’s travelling in the exact opposite direction. (It was shifted
over slightly, but at least it’s heading back towards the source.) The outgoing beam is returned parallel
to the incoming beam.

Besides driveway reflectors, these are also used in surveying to measure distances. A pulse of light is
sent out, and reflects back to the device which measures the travel time. Light in air travels at very
nearly the speed of light of a vacuum, so the travel time can be converted into the distance from the laser
and the reflector.

Several of these retro-reflectors have been placed on the moon, starting with the original Apollo 11
mission in July 1969. Apparently 6 are still operational, including that first one, and including one
deployed recently (August 2023) by India’s Chandrayaan-3 lunar lander. Here’s a wikipedia article about
them: https://en.wikipedia.org/wiki/List_of_retroreflectors_on_the_Moon

Lunar Range Experiment : by measuring the
travel time from the Earth to the Moon and back,
the distance to the Moon can be measured to
within a few millimeters now. Among other
things, these reflectors have shown that the moon
is gradually moving away from the Earth at a rate
of about 3.8 cm/year, and by measuring the slight
wobbling of the Moon, it’s been determined that
the Moon may contain a small molten core like the
Earth (even though it’s not producing a magnetic
field like we have on Earth).

 https://en.wikipedia.org/wiki/List_of_retroreflectors_on_the_Moon 


Image Formation with a Flat Mirror

Let’s look at the light coming from a sin-
gle point (labelled P) on an object that is
located in front of a mirror.
Light from some (or multiple) source(s)
hits the object. Photons are scattered from
that point and (probably) fly out in ‘all’ di-
rections each travelling in a straight line (a
‘ray’).

A ray (photon) that heads directly towards the mirror reflects right back along the same path (the ray
from P to O and back).

A ray heading off at some angle θ above that direction (which is perpendicular to the mirror) hits the
mirror further away. It’s reflected such that θr = θi but note that here all those angles are the same as θ.

In the lower figure, I’ve extended the lines defining the actual photon path into dotted lines behind the
mirror. Notice from geometry that we have the same θ angles on that side also. That means the angle I
labelled α = 90− θ on the left is the same angle also labelled α on the right.

Ultimately, triangle BOP is similar to triangle BOP ′.

More than that though, since those
two triangles share a side (the line
segment BO) they’re not just sim-
ilar, they’re identical and the dis-
tance do (how far the point P is
from the mirror) is the same as di
(how far the point P ′ is behind the
mirror).



The location of point P ′ didn’t depend on
θ, so every ray (photon) that leaves P and
hits the mirror appears to be coming from
that same ‘mirror image’ point P ′.

We see something because photons (rays of
light) appear to be coming from it. Maybe
they actually are coming from it (when
we look directly at something) but here we
also see the copy of the object that appears
to be behind the mirror.

Our eye (or a camera placed there) ‘sees’
rays that seem to be coming from an object
located behind the mirror.

Since no photons are really coming from
that point, they just appear to be, the
image is called a virtual image.

The same process occurs for every point on an object. Rays coming from a point on the top of the bottle
below appear to be coming from the top of the mirror-image bottle behind the mirror. Ditto the rays
coming from any other point that makes up the complete object.



32.3 : formation of images by spherical mirrors

Consider a mirror in the form of a section
of a sphere of radius r. Rays coming in
from the left will reflect off the mirrored
surface. On the left is a CONVEX mir-
ror, with rays being reflected outward. On
the right, we see a CONCAVE mirror,
with the rays being reflected inward.
The sign of the radius of curvature r is
taken to be positive for the concave mir-
ror since the center of the sphere is on the
same side of the mirror as the actual rays
(photons). In the convex case, the center of
curvature is ‘behind’ the mirror, where the
rays (photons) don’t physically visit and
we’ll call that a negative r.

CONVEX vs CONCAVE mirrors. Note that in each
case θi = θr

For most of the real-world cases we’ll be considering, the mirror is only slightly curved, with objects fairly
far away compared to the physical size of the mirror.

The effect is that we’ll almost always be dealing with very small angles.

The Hubble telescope is (in effect - we’ll see more on this later) a concave mirror with r = 115.2 m but
the mirror itself is only 2.4 m across from edge to edge. The rays of light (photons) coming in from a
distance object differ in direction only very slightly. Given the magnitudes here, we can use l = rθ where
r in this case is how far away the object is that we’re looking at. Mars at its closest approach to the
Earth is about 5.45× 1011 m away, so the maximum difference between the rays coming from Mars into
the telescope is about θ = (2.4 m)/(5.45× 1011 m) = 4× 10−11 radians or about 2.5× 10−9 degrees.

Consider a perfectly spherical concave mirror with light rays
coming in from ‘far away’ (i.e. parallel incoming rays). What
will happen to them?
The left figure shows several such rays. A ray travelling along a
path that passes through the center of the sphere (this path is
called the principal axis of the mirror) bounces straight back.
As we move away from this axis, the rays intersect the principal
axis at points there are moving closer to the mirror.

continued...



Let’s ‘do the math’ here and see exactly where the rays go.

Actual Ray Paths Used for the derivation we’re about to do!

Consider a ray that is some distance y above the principal axis. That hits the mirror at some point (B),
reflects (with an angle of incidence θ equal to an angle of reflection, also θ), and the ray then passes
through the principal axis at some point (F). Let x be the distance from C to F.

Note the equilateral triangle being formed here: CBFC. Let’s cut that triangle in half by dropping a
perpendicular from F to the line CB. Then cos θ = (r/2)/(x) or x = r

2
1

cos θ
.

If we drop a perpendicular from point B to the principal axis, that segment will have a length of y, so
we see that sin θ = y/r.

Now cos θ =
√

1− sin2 θ =
√
1− (y/r)2

So finally: x = r
2

1√
1−(y/r)2

This tells us where each ray, parallel to the principal axis but y away from it, will intersect the principal
axis (and we made no approximations (yet), so this is an exact result).

Here are a couple of plots showing how that
function behaves. Moving an r from the right
to the left side, we can write the equation as:
x
r
= 0.5√

1−(y/r)2
so let’s plot x/r as a function of

y/r. Remember y is how far the incoming ray is
away from the principal axis, so y/r can’t be any
larger than 1. It’s likely much smaller than that,
so here we plot x/r out to y/r = 0.25.
With this geometry, rays near the pricipal axis
certainly hit near x = r/2 but as we move away
from there, the rays start hitting further away
from that point, moving towards the vertex of
the mirror. Even with this (unrealistic) geome-
try though, they’re only a few percent off from
the x = r/2 location.



Here’s a similar diagram for the Hubble telescope
which has a diameter of 2.4 m and an effective
radius of curvature of r = 115.2 m. The largest
that y/r can be now is 1.2/115.2 ≈ 0.01 so let’s
make the same plot using that as the ‘worst case’
value for y/r.
We see that x/r varies only very slightly from
0.5, reaching a worse-case of just 0.50003. Rays
near the principal axis hit at x/r = 0.5 or x =
57.600.. m and the rays hitting the outer edge of
the mirror end up at x = (0.50003)(115.2 m) =
57.603 m. That’s only 0.003 m or 3 mm away
from the ideal x = r/2 location.
If we put a detector or piece of film at x = r/2,
light rays coming from a point on some distant
object (say Mars) still don’t all focus at the same
point exactly, resulting in a (minute) level of blur.
We’ll see how we can ‘fix’ this in a moment.

Since the rays very closely all pass through the same point x = r/2, that point is called the FOCAL
POINT of the mirror (which is why it got the label F).

If we’re going to spend a lot of money on a space-based telescope, can we do better with
the mirror and find a geometric shape for which all the parallel rays actually do exactly
pass through a single point? If we built our mirror in that shape, we could eliminate this
problem.

(Careful here - in what follows I’ve switched what
I’m calling X and Y from the previous discussion.)
What if we make the mirror in the shape of a
parabola (technically a paraboloid, where we ro-
tate the parabola around it’s axis):
y = Ax2 or write as y = 1

4f
x2 where x will be the

‘focal point’ of this mirror.
Note that this means if x = R (the radius of the
mirror) and D is its ‘depth’ (from the rim to the
bottom of the parabola) then 4DF = R2 : con-
venient shortcut to determine how ‘deep’ a given
parabolic reflector is given its focal length and di-
ameter (radius).
For Hubble, R = 1.2 m and F = 57.6 m so
D = R2/(4F ) = (1.2)2/(4 × 57.6) = 0.0063 m
or 0.63 cm.
The outer rim of the mirror is less than a centime-
ter above the lowest point in the mirror. If you
looked at the mirror from the side you’d just be
able to make out this very slight curvature.



To first order, it turns out we can convert the equation for a sphere into one for a paraboloid. Let’s do
this with a circle in the XY plane, with the vertex at the origin and the center of the circle at x = 0, y = r.
Then the equation for the circle would be (y − r)2 + (x)2 = r2.

Expanding out the first term: y2 − 2ry + r2 + x2 = r2 or y2 − 2ry + x2 = 0 or: 2ry = x2 + y2.

Now, with real telescope mirrors, we already know that y is going to be tiny, even at the outer edge of
the mirror, so to first order we can write this as 2ry ≈ x2 or y ≈ x2

2r
and with f = r/2 finally: y ≈ x2

4f

which is exactly the form we had for the parabola.

With a parabola, the parallel incoming rays all exactly go through the focal point F. With a sphere,
they do to first order but don’t really if we include all the terms. The fact that a true spherical mirror
doesn’t exactly focus the rays to a single point is called spherical abberation.

Non-mirror Examples of Parabolic Reflectors

Solar Collector

Satellite TV antenna (cartoon)

Satellite TV antenna (actual)
Sound: a way to clearly hear distance

conversations


