
PH2233 Fox : Lecture 12
Chapter 32 : Light Reflection and Refraction

(32.4) : index of refraction

The speed of light in a vacuum is c = 299, 792, 458 m/s. In fact the meter is now defined in such a way
that this is taken to be an exact value. (For any work we do in this class, using c = 3× 108 m/s is close
enough.)

When light travels through other media (air, water, glass, etc) it’s speed is less. As a result, when light
passes from one medium to another with different wave speeds, it ‘refracts’ at that interface, changing

direction. The ratio c/v = n is called the index of refraction for a material. Since v <= c always,

then n >= 1 always.

This table shows some common n’s that we’ll be using.
For naturally occuring substances, diamond appears to
have the largest index of refraction at visible frequen-
cies but lab-created materials constructed down at the
molecular level have reached indices as high as 38.6 now
apparently.

Common Shortcuts:

• Air has n = 1.0003, but it’s common to just use
n = 1 for air since the error introduced is so small.

• Water is about n = 1.33 but that varies a bit de-
pending on impurities in the water, so it’s usually
fine to use n = 4/3 for water.

• Glass varies a bit, but if something is just called
‘glass’, it’s probably ok to approximate it with n =
1.5.

(32.5) : snell’s law

Light is an electromagnetic wave, with a ray or photon having a particular frequency associated with it.
v = λ/T = λf so as light moves from one material into another, its frequency remains the same but that
means its wavelength must change.

Suppose light of some frequency f is moving through medium 1 which has an index of refraction of n1.
That means it’s moving at a speed of v1 = c/n1 and will have a wavelength of λ1 = v1/f = c

n1

1
f

If this light now moves into a different material with an index of refraction n2, it’s frequency stays the
same but it’s wavelength changes to λ2 =

c
n2

1
f
.

The higher the index of refraction, the smaller the wavelength becomes.



RAY vs WAVE models :

Back when we started chapter 32, I talked about two models we can use to analyze light, sound, and
other wave-based phenomena.

Consider a point source of waves (sound, light, etc) putting out waves uniformly in all directions. The left
figure below shows these waves spreading out from the source. We can take a point on each wave (where

the pressure is equal to it’s maximum value, for example, or in the case of light where the underlying E⃗
field has a peak) and call that a wave front. These waves are spreading spherically from the source so
each sphere (each ‘wave front’) is perpendicular to the radius vector from the source, and we’ll call that
vector perpendicular to the wave front a ray.

The figure on the right is a cross section through the left figure more clearly showing the ‘rays’ and ‘wave
fronts’ that describe how the sound is spreading out from the source.

We can analyze waves in two ways then: looking at the waves themselves (via the wave equation), or
following the rays since we know the wave fronts will be perpendicular to those rays.

Suppose we’re far from the source of light so the wave fronts are parallel, with the ‘rays’ perpendicular
to those fronts.

This figure shows light with some wavelength λ1

coming in from the top left, with the various par-
allel lines representing the wave fronts, each sep-
arated by λ1 = v1T where T = 1/f is the period
of the wave and v1 = c/n1.
These waves now enter a different medium with
v2 = c/n2 and we’ll let n2 > n1 here. At
each point where a wave from medium 1 reaches
medium 2, another wave in sync with the incom-
ing wave is created in the new medium. That
means their frequency (and period) will be the
same. BUT since v2 is smaller than v1, it’s wave-
length λ2 = v2T will be shorter. The only way to
make this work is for the waves to change direc-
tion as they enter the new medium.



Here, we zoom in on a pair of fronts
as they move from medium 1 into
medium 2. We’ll define θ as the
angle the ray makes with a normal
to the interface, and propagate θ1
and θ2 around a bit. Looking at
the two triangles in the figure, they
each share side AB, so:

• sin θ1 =
λ1

d
= v1T

d

• sin θ2 =
λ2

d
= v2T

d

Taking a ratio: sin θ2
sin θ1

= v2T/d
v1T/d

= v2
v1
.

Rearranging:
sin θ1
v1

= sin θ2
v2

SNELL’S LAW (general)

In the case of electromagnetic waves like light, we can write v = c/n so taking this one step farther:

sin θ2
sin θ1

= v2
v1

= c/n2

c/n1
= n1

n2
.

Rearranging: n1 sin θ1 = n2 sin θ2 SNELL’S LAW (EM waves)

The two boxed equations are both versions of Snell’s Law. The first is the more generic version that
relates the angles to the actual wave speeds involved (useful for sound and other types of waves). The
second one is specifically for EM waves like light since we usually find tables of n (the index of refraction)
for materials directly instead of what the speed of light is in that material.



Example : Apparent Depth of a Pool
Suppose we’re looking pretty much straight down into a
pool of water where a pair of goggles is resting on the
bottom of the pool. How far away does the bottom of
the water appear to be?
When light hits the goggles, photons scatter off and head
in all directions, including towards the surface so they can
reach our eyes. Consider a ray from the goggles to the
surface with the ray making an angle of θ1 relative to the
vertical. That ray will hit the surface making the same
angle relative to the normal, but will exit the water at a
different angle we can determine via Snell’s Law:

nwater sin θ1 = nair sin θ2

The ray now appears to be coming from a depth d′ that’s higher up than the actual depth d of the
water.

nair is essentially 1, and the angles are pretty small here so we can approximate sin θ ≈ tan θ, so:
sin θ1 ≈ tan θ1 = x/d and sin θ2 ≈ tan θ2 = x/d′

Snell’s law here becomes: nwaterθ1 ≈ θ2 or nwater
x
d
≈ x

d′
or d′ ≈ d/nwater and with nwater = 1.33.. we

have d′ ≈ (3
4
)d. (In this final form, the angle doesn’t appear, so ‘all’ the rays appear to be coming from

this point but remember we assumed the angles were all small, meaning we’re looking vertically down
through the water.)

The water appears only about 3/4 as deep as it actually is.

Example : Document Under Glass

The same thing occurs if we place a document under a thick layer of glass. It’s the same geometry as
above, but nglass ≈ 1.5 so d′ ≈ (2

3
)d. The glass appears to be only about 2/3 as thick as it actually is.

We can see the actual thickness of a thick glass block by looking at its sides (those edges are highlighted
with a thick black line), but notice the bottom back edge of the block appears much closer when we look
at that edge through the glass itself.

With n = 1.5, the block should look to be about 2/3 it’s actual thickness but that’s only if we’re viewing
it by looking straight down onto the face of the glass. Here we’re not. The graph on the right shows the
apparent thickness factor as we change our viewing angle.



(32.6) : visible spectrum; dispersion

Electromagnetic waves can occur over a vast range of frequencies, from radio waves to X-rays and beyond.
Our eyes respond to a fairly narrow range of frequencies covering wavelengths between about 400 nm
and 750 nm. (You’ll see slightly different ranges quoted in various sources.)

We ‘see’ these wavelengths as colors, with
the shorter wavelengths at the blue end of
the spectrum and the longer wavelengths
at the red end of the spectrum.

The index of refraction of real materials isn’t con-
stant but can vary slightly with wavelength, typ-
ically being slightly lower as the wavelength in-
creases.
This figure shows how n varies with λ for a few
materials.
The net result is that if a beam of light consist-
ing of many colors enters a material, the differ-
ent wavelength photons are refracted by different
amounts. This is how a prism works - breaking a
source of light into its constituent colors.

This dispersion has nice side effects, like rainbows and useful effects like breaking light into its constituent
colors using a prism (allowing a spectral analysis of a source of light like a remote star), but we’ll see in
the next chapter it also has bad side effects when lenses are involved, sometimes creating halos of color
around objects.



(32.7) : Total Internal Reflection; fiber optics

One of the useful features of refraction occurs when waves try to travel from a lower speed medium (i.e.
higher n) into a higher speed medium (i.e. a lower n).

In this figure, we have a source of light (say) in a medium with index of refraction n1. Let’s follow some of
the rays (photons) as they encounter the interface between this material and one that has a lower index
of refraction n2.

n1 sin θ1 = n2 sin θ2 so the refracted ray trying to enter the upper material will have an angle of:

sin θ2 = (n1

n2
) sin θ1.

Now in this scenario, n1 > n2 which means that θ2 will be larger than θ1, and that’s what we see
happening with the first two rays. Eventually we get to a high enough θ1 that the RHS of that equation
becomes larger than 1 and we can no longer do the inverse sine to find θ2. The last angle θ1 where we
can still find a solution occurs when θ2 = 90o or when sin θ1 =

n2

n1
. This last angle for which the rays can

escape is called the critical angle, so we can write this as sin θc =
n2

n1
. CRITICAL ANGLE

Some of the light leaving the source can make it out into the upper medium, but some is trapped. This
scenario is referred to as total internal reflection.

Example: pool lights

Suppose we have a pool that is 3 m deep, filled with water, and the item marked ‘Source’ in the above
figure is a light on the bottom of the pool. Find the critical angle and determine how large the circle of
light will be on the surface of the pool?

n1 = 1.33 (water) and n2 = 1.00 (air) so sinθc =
n2

n1
= 1/1.33 = 0.75 yielding θc = 48.59o. Light heading

vertically upward from the lamp makes it out, and measured from there light out to θc makes it out into
the air, but no other light will. This creates a circle of radius: tan θc = r/d where d is the depth of the
pool, so r = d tan θc = 1.134d. If the pool is 3 m deep, there will be disks of light of radius 3.4 m above
each light source. (Calculations like these can be used to determine how many lights need to be placed
on the bottom of the pool to completely light it up.)



Example: Glass Prisms in Binoculars
Often the light-gathering parts of binoculars are
farther apart than our eyes, so they need a way
to move the ‘rays’ closer in. Cheap binoculars
usually do this with mirrors that can degrade over
time but the same effect can be created using a
clear glass prism. In this figure, a ray entering
the binoculars hits the back face of the prism at a
45o angle. Why doesn’t this ray just exit out into
the air there? What is the critical angle at this
point? The ray is in glass with n = 1.5 say so θc
for this glass-air interface is sin θc = 1.00/1.50 =
0.667 from which θc = 42o. That 45o ray exceeds
this, so will be totally reflected at that surface,
even though it’s perfectly clear glass!

Example: Fiberoptics
Another place we find these is in thin fibers
of glass or plastic (such as used in high
speed fiberoptic internet). The light rays
travelling through this pipe hit the side of
pipe at an angle that’s far larger than θc for
the materials involved, meaning that none
of the light can escape.

Example: Medical Fiberoptics
Finally, these can be used in medical sce-
narios. A large number of these fibers can
be bundled as shown in the upper figure.
Some are used to deliver light into the body
and the others are used to ‘see’ inside us.


