
Physics 2233 : Chapter 32 Examples : Light Reflection and Refraction

Note: some of these came from an earlier textbook that used different symbols for the object and
image distances. I’ve tried to track them all down, but just in case:

Symbol Conventions
Variable Current book Old Book
Object Distance do s
Image Distance di s′

Focal distance f f
Object size ho y
Image size hi y′

Corresponding Equations

Mirror Equation 1
do

+ 1
di

= 1
f

1
s
+ 1

s′
= 1

f

Magnification m = hi/ho = −di/do m = y′/y = −s′/s

inverted image m < 0 ⇒ hi < 0 m < 0 ⇒ y′ < 0

Spherical Mirror

f = 1
2
R where R is the radius of curvature of the mirror.

Concave mirror : R > 0 so f > 0 (the vertex of the mirror is farther away from the object)

Convex mirror : R < 0 so f < 0 (the vertex of the mirror is closer to the object)

Real vs Virtual

An image is said to be real if the light rays actually pass through the location of the image (and
therefore a piece of paper or film placed at that point would display or record the image). An image
is said to be virtual if the light rays only appear to be coming from that point.

Flat Mirror

In effect r is infinitely large, so f is also infinity and the mirror equation reduces to di = −do and
m = +1. (In words: an upright image the same size as the object, located as far behind the mirror
as the object is in front of the mirror.)

Ray Diagrams (see book and attached examples for pictures)

Concave Mirror
1. ray parallel to axis reflects through F
2. ray to vertex reflects with same angle
3. ray through F reflects parallel to axis

Convex Mirror
1. ray parallel to axis reflects as if from F
2. ray hitting vertex reflects with same angle
3. a ray heading towards F reflects parallel to axis



Index of Refraction

The speed of light (or any EM waves) is slower moving through any medium than it is in a vacuum.

The ratio c/v is called the index of refraction and is always 1 or larger: n = c/v . The index of

refraction of various common materials is given in table 32-1 on page 939.

Indices of Refraction
Material n = c/v
Vacuum 1.0000...
Air (STP) 1.0003
Water 1.33
Ethyl alcohol 1.36
Glass (fused quartz) 1.46
Glass (crown glass) 1.52
Glass (light flint) 1.58
Lucite, plexiglas 1.51
Sodium chloride 1.52
Diamond 2.42

Snell’s Law relates the angle of an incoming ray to the angle of the outgoing reflected and refracted
rays. The angle here is defined to be the angle with respect to a line perpendicular to the surface
where the ray hits.

Reflected ray: angle of incidence is equal to the angle of reflection

Refracted ray: let θ1 be the angle of the incoming ray in a material with index of refraction n1, and
θ2 be the angle of the refracted ray in a material with index of refraction n2. Then:

n1 sin θ1 = n2 sin θ2

Equivalently: sin θ1
v1

= sin θ2
v2

where vi is the speed of the waves in the two media. This version is

more generic and applies to other waves as well, such as sound.

Dispersion

The index of refraction usually depends (slightly) on the wavelength of the waves, so light of different
frequencies will be bent at slightly different angles. An incoming white light (being made up of
many colors) will ‘split’ into a rainbow spectrum. Details of this spectrum (what colors are present
or absent) can be used to determine the chemical makeup of the source of the light.

Total Internal Reflection

If the light ray is moving from a material with a higher index of refraction into one with a lower
index of refraction (i.e. n1 > n2), there will be an angle of incidence where none of the light is
refracted, meaning all of the light will be reflected back into the material. This is called the critical
angle: sin θc =

n2

n1
.



MIRROR EXAMPLES

Example 1 : A candle 4.85 cm tall is 39.2 cm to the left of a plane mirror. Where is the image
formed by the mirror, and what is the height of this image?

This is a plane mirror, so di = −do and m = hi/ho =
−di/do = +1. Here we have do = 39.2 cm and ho =
4.85 cm so the image will be located at di = −39.2 cm
with a height of hi = mho = (+1)(4.85 cm) = 4.85 cm.
The image is located 39.2 cm behind the mirror, has the
same height as the object, is erect (and although the
problem didn’t ask for it, will be virtual since the light
rays don’t actually pass through the image itself.)

Example 2 : The image of a tree just covers the length of a plane mirror 4.00 cm tall when the
mirror is held 35.0 cm from the eye. The tree is 28.0 m from the mirror. What is its height?

Imagine we had a huge mirror, not just the tiny mirror described here (above figure). Then the
image of the tree would be located (per question 1 above) exactly 28.0 m behind the mirror and
will have the same height as the actual tree. If we place our eye 35 cm on the left side of the mirror
and draw rays from our eye to the top and bottom of the image, the image of the tree will only
take up a small part of the mirror. In fact, we’re told that we can cut the mirror down to be only
4 cm tall and image will completely fit.

We have a case of similar triangles here, then. The ratio
of the height of the image ht to the distance from our
eye to the image dt will be equal to the size of the mirror
hm divided by the distance of our eye to the mirror dm.
But dt will be equal to the distance from our eye to the
mirror plus the distance from the mirror to the image of
the tree. Rearranging our ratio equation: ht/dt = hm/dm
becomes: ht = hmdt/dm but dt = 28 m + 0.35 m so
ht = (0.04 m)(28.0 + 0.35)/(0.35) = 3.24 m, giving us
the true height of the tree.



Example 4 : A concave mirror has a radius of curvature of 34.0 cm. (a) What is its focal length?
(b) If the mirror is immersed in water (refractive index 1.333), what is its focal length?

(a) For a concave mirror, the center of curvature is on
the same side as the outgoing rays, so R > 0 or here
R = +34.0 cm. The focal point for this shape is f =
R/2 = 17.0 cm.
(b) The rays never leave the water, so there is no op-
portunity for them to refract and they will just proceed
in straight lines, reflecting off the mirror exactly as is
the water were air. The ray diagrams are completely
unchanged, so the focal point does not change either.

Example 5 : An object 0.600 cm tall is placed 16.5 cm to the left of the vertex of a concave
spherical mirror having a radius of curvature of 22.0 cm. (a) Draw a principal-ray diagram showing
the formation of the image. (b) Determine the position, size, orientation, and nature (real or virtual)
of the image.

All of the rays that leave the arrowhead and reflect off the
mirror will intersect at the spot where the image of the
arrowhead will be. Most of the rays are difficult to track
but there are some in particular (called the principal
rays) that are easy to draw, so we can just use those
to figure out where the image should be. In the figure,
Ray 1 proceeds parallel to the axis, so when it reflects
off the mirror it will pass through the focal point F. Ray
4 goes from the arrowhead to the vertex, where it will
reflect with the same angle at which it was incident. Ray
2 passes through the focal point which means that when
it hits the mirror, it will reflect off parallel to the axis.

The center of curvature is on the same side as the outgoing rays, so R > 0 or R = +22.0 cm. The
focal distance for a spherical mirror is f = R/2 = +11.0 cm. The object is on the same side as the
incoming rays (incoming to the mirror), so do = +16.5 cm. The image distance therefore will be:
1
do

+ 1
di

= 1
f
or 1

16.5
+ 1

di
= 1

11
(all units in cm in those denominators) which yields di = +33.0 cm.

It is positive which means the image is on the same side as the outgoing rays, which here will
be going to the left, so the image will be on the same side as the object. The magnification
m = − di

do
= − 33

16.5
= −2.00 so the image size will be hi = mho = (−2.00)(0.600 cm) = −1.2 cm.

We would describe this image as being a 1.2 cm, inverted image. (And since the rays do pass
through the image, it will be a real image: we could put a piece of paper there and the image will
form on it.)



Example 6 : Repeat the previous problem for the case in which the mirror is convex.

Note that now the radius of curvature will be negative since the center of the sphere is on the
opposite side from the outgoing rays, so R = −22.0 cm and f = R/2 = −11.0 cm: the focal point
will be on the right side of the image now, instead of being on the left as it was in the previous
problem.

Here we draw three of the principal rays. Ray 1 proceeds
parallel to the axis, so when it reflects off the mirror it will
appear to be coming from the focal point F. Ray 3 heads
towards the center point C of the mirror so that it hits it
perpendicularly and bounces straight back off in the same
direction it came in. Ray 2 heads towards the focal point
F, which means that when it hits the mirror, it will reflect
off parallel to the axis. Extending all these lines back as
dotted lines in the figure, we see that image of the arrow
head appears to be inside the mirror at the location shown.

We can find the image distance from: 1
do

+ 1
di

= 1
f
or 1

16.5
+ 1

di
= 1

−11
(all units in cm in those

denominators) which yields di = −6.6 cm. It is negative which means the image is on the opposite
side as the outgoing rays, which are going to the left, so the image will be on the opposite side as
the object (which we see in our principal ray diagram already).

The magnificationm = − di
do

= −−6.6
16.5

= +0.40 so the image size will be hi = mho = (+0.40)(0.600 cm) =
+0.24 cm.

We would describe this image as being a 0.24 cm, erect image. (And since the rays do not pass
through the image, it will be a virtual image.)



Example 7 : The diameter of Mars is 6784 km, and its minimum distance from the earth is
5.58× 107 km. When Mars is at this distance, find the diameter of the image of Mars formed by a
spherical, concave telescope mirror with a focal length of 2.80 m.

See the figure from example 5 but now imagine that the object is located extremely far away. A
mirror like this has a positive radius of curvature, hence a positive focal distance, so f = +2.80 m.

1
do

+ 1
di

= 1
f
so 1

di
= 1

f
− 1

do
. Here, do is a billion times larger than f , so 1

do
is a billion times smaller

than 1
f
. Essentially, then, 1

di
= 1

f
or di = f = 2.80 m. (The image is essentially being formed right

at the focus of the mirror.)

The magnification factor m = − di
do

= − 2.80 m
5.58×1010 m

= −5.02× 10−11.

The image of Mars then will have a height of hi = mho = (−5.02 × 10−11)(6.784 × 106 m) =
−3.40× 10−4 m or about −0.340 mm. The image then will be 0.340 mm tall and inverted, but at
least it’s a real image since the rays do pass through the image, so we can put a camera there and
take a picture that we could blow up further, as seen in the left figure below.

On the right is another picture of Mars taken from the Hubble telescope that has a focal length of
about f = 57 m. That’s about 20 times the focal length of the backyard telescope and ultimately
creates an image about 20 times larger as well, or about 6.8 mm or 6.8 cm across.

These images weren’t taken at the same time, so show different views of Mars. The point here is to
note how much more details are visible using the telescope with the larger focal length (and much
larger mirror as well - we’ll see how that effects the resolution in a later chapter).

Backyard telescope with f = 2.8 m

Hubble space telescope with f = 57 m



Example 10 : You hold a spherical salad bowl 90 cm in front of your face with the bottom of the
bowl facing you. The salad bowl is made of polished metal with a 35 cm radius of curvature. (a)
Where is the image of your 2.0 cm tall nose located? (b) What are the image’s size, orientation,
and nature (real or virtual)?

(Go back a couple of problems to see a ray diagram for a convex mirror like this.)

The center of curvature is on the opposite side from the outgoing rays, so the radius of curvature
will be negative: R = −35.0 cm and f = R/2 = −17.5 cm. The nose is on the same side as the
incoming rays, so do = +90 cm. Then the image distance can be calculated from 1

do
+ 1

di
= 1

f
or

1
90

+ 1
di

= 1
−17.5

(all the denominators being in units of centimeters).

This produces di = −15 cm. Negative means it will not be on the same side as the outgoing rays
(which are on left, so the image is on the right, behind the mirror). (And since the light rays aren’t
passing through the image, it must be virtual.)

The magnification m = −di/do = −(−15 cm)/(90 cm) = +0.167 (positive telling us that the
image will be erect and not inverted). The size of the nose in this image then will be hi = mho =
(0.167)(2 cm) = 0.33 cm.

So finally: the image will be 0.33 cm tall (smaller than the actual object), erect, and virtual.



Example 13 : A dentist uses a curved mirror to view teeth on the upper side of the mouth.
Suppose she wants an erect image with a magnification of 2.00 when the mirror is 1.25 cm from a
tooth. (Treat this problem as though the object and image lie along a straight line.) (a) What kind
of mirror (concave or convex) is needed? (b) What must be the focal length and radius of curvature
of this mirror? (c) Draw a principal-ray diagram to check your answer in part (b).

1
do

+ 1
di

= 1
f
or 1

di
= 1

f
− 1

do
. Putting the right side over a common denominator: 1

di
= do−f

dof
or

rearranging: di =
dof
do−f

. The magnification factor m = −di/do so we see that we can write this as

m = − f
do−f

.

For a concave mirror, f = R/2 is positive, so that denominator can be rigged to be less than 1,
meaning that m overall can be larger than 1.

For a convex mirror, the radius of curvature of the mirror is negative, so f < 0 also. Let’s write
f = −|f | to emphasize it being negative. Then m = − f

do−f
becomes: m = − −|f |

do−(−|f |) = + |f |
do+|f | .

The object is always on the same side as the incoming light though, so do is always positive. That
means the denominator will always be larger than the numerator and m will always be less than
unity. This gives us a general result for convex mirrors:

The image in a convex mirror will always appear to be smaller than the true object.

We thus can’t make this dental mirror from a convex mirror, since we desire the image to be twice
the size of the object.

We can also determine the type of mirror needed from
just applying the equations we have for image and ob-
ject distances and magnification. We have 1

do
+ 1

di
= 1

f

and m = −di/do. But we want m to be +2.0 (the
image should be twice the size of the object, and it
should be erect, which makes m positive.) We already
know the distance from the tooth to the mirror (the
object distance) to be do = 1.25 cm m = −di/do or
(+2.00) = −di/(1.25 cm) from which di = −2.50 cm.
(Negative, so the image is on the other side from the
outgoing rays. Those rays are on the left, so the image
will be on the right - i.e. behind the mirror.) Now that
we have both do and di we can calculate the focal length:
1
do
+ 1

di
= 1

f
or 1

1.25
+ 1

−2.50
= 1

f
from which f = +2.50 cm.

f = R/2 so R = 2f = +5.00 cm. The radius of curvature
being positive means the center C is on the same side as
the outgoing rays, which means C is on the left of the
mirror, which makes the mirror concave. Whew.



Example 14 : A spherical, concave shaving mirror has a radius of curvature of 32.0 cm. (a) What
is the magnification of a person’s face when it is 12.0 cm to the left of the vertex of the mirror? (b)
Where is the image? Is the image real or virtual? (c) Draw a principal ray diagram showing the
formation of the image.

This mirror is concave, so C is on the same side as the
outgoing rays, making R positive: R = +32.0 cm from
which f = R/2 = +16.0 cm. The object (the face) is
12.0 cm to the left of the vertex of the mirror, which
puts in on the same side as the incoming rays so do =
+12.0 cm. We can now calculate di from

1
do

+ 1
di

= 1
f
or

1
12

+ 1
di

= 1
16

or finally di = −48.0 cm. Negative means
it will be on the opposite side from the outgoing rays:
that is, on the ‘other’ side (behind) the mirror. The light
rays don’t get behind the mirror, so it will be virtual.
The magnification m = −di/do = −−48

12
= +4.00. That’s

positive, so the image is erect. So finally: we see an erect,
virtual image that is magnified by a factor of 4.

Ray 1 goes out parallel to the axis, hits the mirror and reflects back through the focal point F.
Ray 3 hits the mirror perpendicularly and passes through the center of curvature C. Ray 4 hits the
vertex and reflects with the same angle as the angle of incidence. Ray 2 (the one that we would
draw from the arrow head through the focal point F) we can’t draw since that line doesn’t intersect
the mirror anywhere.

Example 64 : A light bulb is 4.00 m from a wall. You are to use a concave mirror to project an
image of the bulb on the wall, with the image 2.25 times the size of the object. How far should the
mirror be from the wall? What should its radius of curvature be?

So here we have a light source that is not moving, and we’re
going to be adjusting the position of the concave mirror back
and forth to achieve the desired effect. The figure sketches out
where things are and what they should be labeled. (NOTE :
this figure is from our old book which used s to represent the
object distance do and s′ for the image distance di.)
The object is on the same side as the incoming rays and the
image is on the same side as the outgoing rays, so we have do
and di both being positive. But since m = −di/do, that implies
that the magnification must be negative, so m = −2.25. The
distance from the object to the wall is 4.00 m so (4 m)+do = di.

We have two equations now involving do and di. First: m = −di/do = −2.25 or di = 2.25do. Second:
di = do + (4 m). This implies that 2.25do = do + (4 m) or do = 3.2 m. Now we know how far the
mirror is behind the bulb. The distance from the mirror to the wall then is di = 2.25do = 7.2 m.

For a spherical mirror, f = R/2 and 1
do
+ 1

di
= 1

f
so 1

f
= 1

3.2 m
+ 1

7.2 m
= 0.4514 m−1 and f = 2.215 m,

from which R = 2f = 4.43 m.



Example 66 : A mirror on the passenger side of your car is convex and has a radius of curvature
with magnitude 18.0 cm. (a) Another car is seen in this side mirror. The car physically is behind
you, 13.0 m from the mirror and is 1.5 m tall. What is the height of the image formed by the
mirror? (b) These mirrors usually have a warning attached that objects viewed in it are closer than
they appear. Why is this so?

What sign should f have? A convex mirror means when you look at it, it is bulging out a bit in
the center. The center of curvature for this mirror then is somewhere beyond the mirror, making
it NOT on the side of the outgoing rays (this is a mirror, not a lens), so R = −18 cm. f = R/2 so
f = −9 cm.

So we have an object now (the car behind us) located at s = 13 m (positive since it’s on the same
side of the mirror as the light incoming from the object to the mirror). Where will be image be?
1
do

+ 1
di

= 1
f
but we’ll use this in the rearranged form: di =

dof
do−f

. Putting everything in terms of

centimeters: di =
(1300)(−9)
1300−(−9)

= −8.94 cm. (So the image of the car appears to be about 9 cm behind

the mirror as I look towards it.)

The magnification of this image will be m = −di/do = −(−8.94 cm)/(1300 cm) = 0.00688. (Posi-
tive, so the image of the car is NOT inverted: that would be pretty disorienting.)

The image of the car then will have a height of hi = mho = (0.00688)(1.5 m) = 0.010 m or just
1 cm high.

So why does the mirror carry a label about ‘objects in mirror are closer than they appear?’

If the rear-view mirror is, say, 50 m away from my eyes, we found that the image of the car would
be 9 cm behind the mirror and about 1 cm high. This represents an angle in my field of view of
about: tan θ = s

r
= 1 cm

50+9 cm
or θ = 0.97o. If I were to just turn around and look at the car directly, it

has a height of 1.5 m and is 13 m away, so the angle it subtends would be tan θ = 1.5 m
13 m

or θ = 6.6o,
which is nearly 6 times larger.

Thus the image looks like it’s much farther away than the car actually is.



Example 77 : A pinhole camera is just a rectangular box with a tiny hole in one face. The film is
on the face opposite this hole, and that is where the image is formed. The camera forms an image
without a lens.

(a) Make a clear ray diagram to show how a pin-
hole camera can form an image on the film with-
out using a lens. (Hint: put an object outside the
hole and then draw rays passing through the hold
to the opposite side of the box.) (b) A certain
pinhole camera is a box that is 25 cm square and
20.0 cm deep, with the hole in the middle of one of
the 25 cm ×25 cm faces. If this camera is used to
photograph a fierce chicken that is 18.0 cm high
and 1.50 m in front of the camera, how large is
the image of this bird on the film? What is the
magnification of this camera?

Rays that pass through the hole are undeflected; all other rays are blocked. If we draw a ray from
the top of the object, there’s just one place it can go - through the hole in the box and then hitting
the opposite side of the box, where we’ve placed the film. Clearly an inverted image is being formed,
no matter how far the side is from the pinhole, and no matter how far the object is from the pinhole.
So here the image distance will be di = +20 cm. (That’s the distance between the pinhole and the
film, and the sign is positive since the image is clearly on the same side as the rays ‘outgoing’ from
our pinhole ‘lens.’) The source is located 1.5 m away from the lens, so the magnification of the
image will be m = −di/do = −(20)/(150) = −0.133. The size of the chicken in the image will be
hi = mho = (−0.133)(18 cm) = −2.4 cm. (So the image is 2.4 cm tall and inverted.)

(Note: there is no opportunity for rays to focus here, so there really isn’t a focal length for this type
of ‘lens.’ (In fact based on the diagram, any object at any distance will form a clear, in-focus image
on the film, so this type of ‘camera’ is considered to have an infinite depth of focus.) Also, since
the pinhole needs to be very small for this to work, very little light gets inside the box and a long
exposure time is required to form a picture (during which time objects probably moved, blurring
the picture).)



INDEX OF REFRACTION EXAMPLES

Example 3 : A beam of light has a wavelength of 650 nm in vacuum. (a) What is the speed of this
light in a liquid whose index of refraction at this wavelength is 1.47? (b) What is the wavelength
of these waves in the liquid?

(a) The velocity of light in a medium of refractive index n is v = c/n, so for this material, v =
(3.00× 108 m/s)/(1.47) = 2.04× 108 m/s.

(b) The frequency is the one thing that remains the same across the interface. If we stand on the air
side of the interface, we count some number of waves passing by each second (i.e. the frequency).
On the liquid side of the interface, the same number of waves must be passing by each second.
Otherwise waves would be piling up or being destroyed, and neither occurs. v = λf so f = v/λ. If
we have two materials, a and b we could write this as: va/λa = f and vb/λb = f so va/λa = vb/λb.
But v = c/n so we can also write this as: c

na
/λa = c

nb
/λb. Rearranging terms, we finally find that:

naλa = nbλb.

For our situation, call a the air side where na = 1 (essentially) then (1)(650 nm) = (1.47)(λb) or
λb = 442 nm.

Example 5 : A light beam travels 1.94× 108 m/s in quartz. The wavelength of the light in quartz
is 355 nm. (a) What is the index of refraction of quartz at this wavelength? (b) If this same light
travels through air, what is its wavelength there?

(a) v = c/n and here we have the speed of light in quartz, so n = c/v = (3 × 108 m/s)/(1.94 ×
108 m/s) = 1.546.

(b) In the previous problem, we found that naλa = nbλb. If here we call a the quartz and b the air,
then: (1.546)(355 nm) = (1.00)(λb) or λb = 549 nm in the air.

Example 11 : Light passes through three PARALLEL slabs of different thicknesses and refractive
indices. The light is incident in the first slab and finally refracts into the third slab. Show that the
middle slab has no effect on the final DIRECTION of the light. That is, show that the direction of
the light in the third slab is the same as if the light had passed directly from the first slab into the
third slab. Generalize this result to a stack of N slabs. What determines the final direction of the
light in the last slab?

In the first slab, we have a material with index of refraction n1, and the light ray is at an angle of,
say, θ1 (measured with respect to a line perpendicular to the interface between 1 and 2 (i.e. the
normal)).

It now enters material 2 with index of refraction n2. The angles will be related by Snell’s Law:
n1 sin θ1 = n2 sin θ2.



This ray now continues through material 2 and enters material 3 with index of refraction n3. The
interfaces are parallel, so the normals are also parallel. That means that the angle that the ray
makes when it hits material 3 is also θ2. In material 3, the angle will be found from Snell’s Law
again: n2 sin θ2 = n3 sin θ3.

But comparing these two Snell’s equations, we see that n1 sin θ1 = n3 sin θ3 directly, which is exactly
the equation we would have written if we removed the middle material and just had the first and
third slabs of material in direct contact.

If we have n such PARALLEL slabs stacked on top of one another, the same situation occurs:
n1 sin θ1 = n2 sin θ2 and
n2 sin θ2 = n3 sin θ3 so n1 sin θ1 = n3 sin θ3. Then n3 sin θ3 = n4 sin θ4 but n1 sin θ1 = n3 sin θ3 so
n1 sin θ1 = n4 sin θ4 and so on all the way down the stack.

This means that if we stack a series of slabs on top of one another, the angle the light makes in the
last slab can be calculated directly using only the indices of refraction in the top and bottom slabs.

What IS different is WHERE the beam finally comes out. At each interface, the ray is changing
direction, so the exact POINT where it intersects the next interface will move around. The direction
of the final beam may be unaffected, but the offset from the original beam can be much different
depending on if we have all n slabs, or just the top and bottom slabs in direct contact.

Example 13 : In a material having an index of refraction n, a light ray has frequency f , wavelength
λ and speed v. What are the frequency, wavelength, and speed of this light (a) in vacuum and (b)
in a material of index of refraction n′?. In each case, express your answers in terms of only f , λ, v,
n and n′.

We’ve already argued in a previous problem that the frequency does not change. We also have the
general relations: v = c/n and naλa = nbλb.

In the following, remember that what the problem is giving us is the values in the material with
index of refraction n.

(a) In vacuum, then we can rearrange v = c/n to say that c = vn, c being the velocity in vacuum.

From naλa = nbλb, let’s say that b represents the material and a the case we are interested in (i.e.
in a vacuum). Then (1)λa = nλ or the wavelength in a vacuum will be n times the wavelength in
the material.

(b) Now we are in some other material with index of refraction n′. So now v′ = c/n′ but from part
(a), we were able to rewrite c as c = vn so v′ = (vn)/n′ or v′ = n

n′v

For the wavelength in this new material, we have generically naλa = nbλb. Let a represent the
original material and b be the new material. Then in terms of the variables they gave us for the
original material: nλ = n′λ′ or λ′ = n

n′λ.



Example 17 : Light enters a solid pipe made of plastic
having an index of refraction of 1.60. The light travels
parallel to the upper part of the pipe. You want to cut
the face AB so that all the light will reflect back into the
pipe after it first strikes that face. (a) What is the largest
that θ can be if the pipe is in air? (b) If the pipe is to be
immersed in water of index of refraction n = 1.33, what
is the largest that θ can be?

Using the conventions of the book, we’ll call a the mate-
rial the light is traveling through and b the other material
(which here will be either air or water). In material a,
the light hits the interface with an angle of θa and will
refract into material b with an angle we can find from
Snell’s Law. For total internal reflection, the angle
the light ray makes WITH THE NORMAL (θa) should
be the critical angle found from: sin θcrit =

nb

na
. At that

angle, θb becomes 90o and none of the light makes it out
of the original material.
We are trying to find the angle in the original figure
though, which is NOT measured with respect to the nor-
mal. Fortunately as the figure at right shows, they are
simply related since θ + θa = 90o. So if we can find the
critical angle, we can relate that to the angle we need to
cut the material.

(a) If the outside (b) material is air, then nb = 1.00 so the critical angle becomes: sin θcrit =
nb

na
= 1

1.60

from which θcrit = 38.7o. The angle of the face then is θ = 90− θcrit = 51.3o.

(b) If the outside (b) material is water, then nb = 1.333 so the critical angle becomes: sin θcrit =
nb

na
= 1.333

1.60
from which θcrit = 56.4o. The angle of the face then is θ = 90− θcrit = 33.6o.

Note: if we design this thing to operate in the air, will it work under water as well? If we use the
angles from part (a), then under water light will be hitting the sloping surface at an angle of 38.7o

with respect to the normal. But this angle is less than the critical angle for the case of the material
immersed in water. Light will happily refract out through the surface into the water.

On the other hand, if we design it to operate under water, then in air light will still be hitting the
sloping surface with an angle of 56.4o which is well above the critical angle for material-vs-air, so
the light will still be totally reflected even when this object is in the air.



Example 20 : A glowing ring is dropped into a river that is 10 m deep. Assuming the ring is
small enough to be considered a point source of light, what is the AREA of the circle of light that
is formed on the surface of the water?

The largest angle of incidence for which any light can
refract into the air (and therefore escape from the water
and be seen from above the river’s surface) is the critical
angle (for the case of material a being water and mate-
rial b being air). The figure shows a ray at the critical
angle. The distance from the light source to the sur-
face is 10 m. The radius of the lit-up circle formed on
the surface is r (from which we can compute the area).
From the figure, r = d tan θcrit but we can find θcrit from
sin θcrit = nb/na = 1.00/1.333 = 0.75 or θcrit = 48.6o. So
r = d tan θcrit = (10 m)(1.134) = 11.34 m The area of
the lighted circle then is A = πr2 = 404 m2.

Example 22 : Light is incident along the normal on face
AB of a glass prism of refractive index 1.52 as shown in
the figure. Find the largest value the angle α can have
without any light refracted out of the prism at face AC
if (a) the prism is immersed in air and (b) the prism is
immersed in water.

If no light is to refract out of the glass at
the glass-to-air interface, then the incident
angle at that interface is θcrit. The ray has
an angle of incidence of 0o at the first sur-
face of the glass, so the light enters the
glass without being bent. Using this fig-
ure, we can relate the critical angle to the
desired angle of the edge of the glass α so
find that α+ θcrit = 90o. So if we can find
the critical angle, we can then determine
the desired angle α of this prism.

(a) For the glass-air interface, we have sin θcrit = nb/na = (1.00)/(1.52) so θcrit = 41.1o. The prism
angle α then is α− 90o − θcrit = 48.9o.

(b) For the glass-water interface, we have sin θcrit = nb/na = (1.333)/(1.52) so θcrit = 61.3o. The
prism angle α then is α− 90o − θcrit = 28.7o.



Example 26 : Light traveling in water strikes a glass plate at an angle of incidence of 53.0o. Part
of the beam is reflected and part is refracted. If the reflected and refracted portions make an angle
of 90o with each other, what is the index of refraction of the glass?

First, we draw a figure to see what’s go-
ing on here. The angles of incidence and
reflection will be 53o. That angle is al-
ways measured with respect to the normal
drawn at the interface. The light is then
refracted into the second material at some
angle. Moving clockwise around the figure,
we can propagate angles around. The an-
gle between the reflected light beam and
the interface will be 90 − 53 = 37o. We
were told that the refracted and reflected
rays make an angle of 90o so that tells us
that the angle between the refracted ray
and the interface must be 90 − 37 = 53o.
Knowing that angle, we can determine the
angle of refraction (the angle between the
ray and the normal) to be 37o.

na sin θa = nb sin θb where a is the water side (where na = 1.333) and b is the glass side with the
unknown index of refraction. Using the angles we determined above, 1.333 sin 53o = nb sin 37

o from
which we find that nb = 1.77.

Example 38 : A light beam is directed parallel to the axis of a hollow cylindrical tube. When the
tube contains only air, it takes the light 8.72 ns to travel the length of the tube, but when the tube
is filled with a transparent jelly, it takes the light 2.04 ns longer to travel its length. What is the
refractive index of this jelly?

Note the phrasing here. When we fill the tube with jelly, it takes 2.04 ns LONGER than when the
tube was just filled with air, so the time it takes for light to pass through the jelly-filled tube is
(8.72 ns) + (2.04 ns) = 10.76 ns.

The speed of light in a medium with index of refraction n is v = c/n. In the ‘air’ case, n = 1 so
v = c and we can use the information provided to figure out the actual length of the tube: d = vt
so d = (3.00× 108 m/s)(8.72× 10−9 s) = 2.616 m.

The length of the tube hasn’t changed, so when the light is traveling through the jelly, d = vt so
(2.616 m) = (v)(10.76× 10−9 s) from which v = 2.431× 108 m/s. Finally, n = c/v = 1.23.

We can short cut this process though. Let’s use a subscript of a to represent the air case, and j the
jelly-filled case. Then d = vt = vata = vjtj. But va = c so cta = vjtj. Rearranging this: c/vj = tj/ta.



But c/vj is just the index of refraction of the jelly so nj = tj/ta = (10.76 ns)/(8.72 ns) = 1.23.
(Doing it this way avoided the intermediate calculations and the prospect of introducing round off
errors.)

Example 40 : In a physics lab, light with wavelength 490 nm travels in air from a laser to a
photo-cell in 17 ns. When a slab of glass 0.840 m thick is placed in the light beam, with the beam
incident along the normal to the parallel faces of the slab, it takes the light 21.2 ns to travel from
the laser to the photo-cell. What is the wavelength of the light in the glass?

We can find the wavelength of the light in the glass if we can determine its index of refraction.
See example 4 above, where we derived that: naλa = nbλb (where here a labels air (na = 1.0 and
λa = 490 nm).

We could use the information provided in the air case to determine the total distance d between the
laser and the photo-cell. Then when we add the slab of glass, we have the light traveling 0.840 m
through glass and d − .84 through air. Each of those represents a time interval, the sum of which
needs to be 21.2 ns.

A semi-shortcut here is to note that when we put the glass in place, it takes 4.2 ns LONGER for
the light to travel that 0.84 m of distance. So if we just look at that section of the path, the time
is takes light to travel in air that distance is (0.84 m)/c and the time it takes light to travel in the
glass is (0.84 m)/v but v = c/n so we can write this as (0.84 m)n

c
. The DIFFERENCE of these

times is 4.2 ns so: (0.84 m)n
c
− (0.84 m)1

c
= 4.2 ns. (Note here we put the time through the glass

first, since we know the speed of light will be less there, meaning that the travel time will be larger.)

Rearranging the left side: (0.84 m)n−1
c

= 4.2 ns or (n − 1) = (4.2 ns)(c)/(0.84 m) or finally
n = 1+ (4.2 ns)(c)/(0.84 m). Inserting the value of c and converting the time from nanoseconds to

seconds: n = 1 + (4.2×10−9 s)(3.00×108 m/s)
0.84 m

= 1 + 1.5 = 2.5.

And now finally naλa = nbλb gives us (1.000)(490 nm) = (2.50)(λb) or λb = 196 nm.



Example 41 : A ray of light is incident in air on a block
of a transparent solid whose index of refraction is n. If
n = 1.38, what is the largest angle of incidence θa for
which total internal reflection will occur at the vertical
face (point A in the figure)?

Sketching the figure at right, the situation described in
the problem implies that the angle the light hits the ver-
tical face (at point A) should be the critical angle. But
that means that θb will be 90− θcrit due to that triangle
formed from the dotted lines (which are the normals to
the two surfaces).
So, looking at point A, the glass-to-air interface, and
applying Snell’s law: (1.38) sin θcrit = (1.00) sin 90 or
θcrit = 46.4o.
But this implies that: θb = 90− θcrit = 43.6o

Now we can apply Snell’s law at the top surface to
find the angle of incidence: na sin θa = nb sin θb or
(1.000) sin θa = (1.38) sin 43.6 = 0.952 which which
θa = 72.1o.



Example 42 : A light ray in air strikes the right-angle
prism shown in the figure. At point A, the angle of the
prism is 60o and at point B, the angle is 30o. (Note: the
angles were left out of the figure in the book but you
can’t solve the problem without them.) This ray consists
of two different wavelengths. When it emerges at face
AB, it has been split into two different rays that diverge
from one another by 8.5o. Find the index of refraction of
the prism for each of the two wavelengths.

The trick here is to convert the angles provided into the angles we actually need to apply Snell’s
law, which are angles with respect to the normal.

So first we draw a line normal to the AB line and intersecting the line where the incident rays are
hitting that surface. The dotted line they drew in the figure is parallel to the base of the prism,
so the angle between the dotted line and the line AB (in the clockwise direction) is also 30o. The
angle from the dotted line UP to the normal we just drew is thus 60o. But looking on the inside of
the prism now, that’s exactly the angle the incident ray is making with the normal. (We will surely
do this example in class to make this ‘propagation of angles’ more clear.) So the angle of incidence
(for the light in the glass as it hits the glass-air interface along the line AB is θa = 60o.

Similar hand-waving converts the given angles into the angles of refraction for the two rays. The
upper ray has θb = 60 + 12 = 72o and the lower ray has θb = 60 + 12 + 8.5 = 80.5o.

Snell’s law for the refracted rays: na sin θa = nb sin θb. Here, na is the unknown index of refraction
of the prism (n) and nb is the index of refraction of air (1.00) so: (n)(sin 60) = (1.00)(sin θb) or
rearranging: n = sin θb

sin 60
= 1.155 sin θb

For the upper ray: n = (1.155)(sin 72) = 1.098 and for the lower ray: n = (1.155)(sin 80.5) = 1.139.

Example 46 : After a long day of driving, you take a
late-night swim in a motel swimming pool. When you
go to your room, you realize that you have lost your
room key in the pool. You borrow a powerful flashlight
and walk around the pool, shining the light into it. The
light shines on the key (which is lying somewhere on the
bottom of the pool) when the flashlight is held 1.2 m
above the water surface and is directed at a point on the
surface of the water a horizontal distance of 1.50 m from
the edge (see figure). If the water here is 4.0 m deep,
how far is the key really from the edge of the pool?

The light from the flashlight will be refracted when it enters the water. We can use the information
provided to determine the angle of incidence. If we draw a rectangle around the air-part of the
light ray with the top of the rectangle aligned with the dotted line in the figure, we can see that
tan θa = 1.5/1.2 so θa = 51.34o.



The angle of refraction, then, can be found from Snell’s law: na sin θa = nb sin θb where a is the air
side and b is the water side: (1.00) sin 51.34 = (1.333) sin θb from which θb = 35.86o.

Forming a triangle with a hypotenuse representing the light ray in the water, we see that the
bottom of that triangle and the side are related by tan θb = x/4 or x = (4.00 m) tan 35.86 =
(4.00 m)(0.7228) = 2.89 m.

The full distance from the edge of the pool to the spot on the bottom of the pool then is (1.5 m) +
(2.89 m) = 4.39 m.

Example 47 : You sight along the rim of a glass with
vertical sides so that the top rim is lined up with the
opposite edge of the bottom. The glass is a thin-walled
hollow cylinder 16.0 cm high with a top and bottom di-
ameter of 8.0 cm. A dime is placed at the center of the
bottom of the glass. Now, while you keep your eye point-
ing in the same direction, a friend fills the glass with a
transparent liquid and you see the dime ‘move’ so that
it is now directly in your line of vision. What was the
index of refraction of the liquid?

The left figure shows the situation when the glass is empty. The person does not move where



they’re pointing their eye so when the glass is later filled (right figure) we see that we can determine
the angle of incidence from the information provided in the left figure. From that figure, tan θa =
8.0 cm
16.0 cm

= 0.500 or θa = 26.57o.

The right figure shows the path of the light ray when the glass is filled. We’re told that we see the
dime now, but the dime was really located at the middle of the glass, so the ray must be hitting
the middle of the glass now. From this diagram, tan θb =

4.0 cm
16.0 cm

= 0.250 or θb = 14.04o.

Now that we know the two angles, we can apply Snell’s law to find the index of refraction the liquid
must have had: na sin θa = nb sin θb where a is the air and b is the liquid, so: (1.00) sin 26.57 =
(n) sin 14.04 from which n = 1.84.

Example 48 : A beaker with a mirrored bottom is filled with a liquid whose index of refraction
is 1.63. A light beam strikes the top surface of the liquid at an angle of 42.5o from the normal. At
what angle from the normal will the beam exit from the liquid after traveling down through the
liquid, reflecting from the mirrored bottom, and returning to the surface?

This can be done without doing any calcu-
lations at all. The ray has some angle of
incidence θa. It will refract into the liquid
at some other angle θb. That ray reflects
off the bottom but we see from the dia-
gram that that angle ϕ will be the same as
the angle θb. On the mirror, the angle of
reflection will be the same as the angle of
incidence. The ray now proceeds with this
angle to the surface but we see that the an-
gle of incidence θ′a is the same as ϕ, which
in turn was the same as θb, so when we do
Snell’s law for the ray leaving the liquid,
we end up with exactly the same equation
we had when it originally entered the liq-
uid and the angle it leaves with (θ′b) will be
the same as the original incidence angle.



Example 51 : The prism shown has a refractive index
of 1.66 and the angles A are each 25o. Two light rays m
and n are parallel as they enter the prism (perpendicular
to that surface). What is the angle between them after
they emerge?

The problem does not specify the material
the light rays are moving in when they are
outside of the prism. We’ll assume that
it is air. Looking at the upper ray first,
it is entering the prism on the back per-
pendicular to that surface, so the angle of
incidence there is zero meaning that the
angle of refraction will be zero as well. So
the light continues in the original direc-
tion until it hits the sloping surface. It
strikes this surface at an angle. Since the
index of refraction of the prism is higher
than air, the beam will be refracted in a
way that the angle of refraction is larger
than the angle of incidence (on that sur-
face). That means that the upper ray will
be bent downward. Similarly, looking at
the lower ray, we can argue that it will
end up being bent upwards after passing
through the prism. This lets us draw the
figure at right, which we can use to propa-
gate angles around.

Looking at the angles in the triangle at the top, we can infer that the angle of incidence will be the
same as the angle A at the top of the prism. We know the index of refraction of the material, so
we can compute the angle of refraction θb. That angle plus β equals 90 degrees. β plus A plus 90
plus δ equals 180, so finally we can find that angle δ in the figure, and the angle between the two
outgoing rays will be 2× δ. (Seems like a lot of steps but I couldn’t find a shortcuts.)

In this particular prism, we were told that the angles at the top and bottom were both equal to 25o

so at least we only need to do all these calculations once.

Snell’s law applied to the upper face where the ray is moving from the prism into air: na sin θa =
nb sin θb where a is the glass and b is the air, so: (1.66) sin 25 = (1.00) sin θb or θb = 44.55o.

θb + β = 90 so β = 45.45o.

Finally A+ β + δ = 90 so δ = 19.55o so the angle between the two rays is twice that or 39.1o



Multiple Mirrors (Hubble Telescope)

Refer to the section on convex and concave mirrors.

The focal length of the Hubble space telescope is quoted as being just under 60 m, but that is far
larger than the physical size of the telescope, so how is this accomplished? The trick is to use more
than one mirror:

Light from remote objects enters the open end of the telescope tube (from the left in the figure) and
falls on a large concave mirror (called the primary) at the back end. The radius of curvature of
this mirror is R = +11040 mm, creating a focal length of f = R/2 = 5520 mm = 5.520 m. (Which
is nowhere close to the 60 meters it’s supposed to have...)

Before the rays have a chance to converge on the focal point though, they encounter a second mirror
(called the secondary). This convex mirror has a radius of curvature of R = −1358 mm, creating
a focal length of f = R/2 = −679 mm = −0.679 m.

Let’s see what happens to light rays coming in from far away (and actually given the dimensions,
radii of curvature, etc here, even pointing the telescope towards the earth would be considered ‘far
away).

The first mirror will (try to) form an image at: di =
dof
do−f

and when the object distance do is vastly
larger than the focal length, the image essentially forms right at the focal length: di = f = 5.520 m.

Now, what happens if we stick that second mirror in the way. The image from the first mirror
becomes the object for the second mirror. This ‘object’ is located behind the second mirror
though (in the figure, that would be slightly to the left of the secondary mirror). The two mirrors
are separated by 4.90597 m so this ‘object’ is located 5.520 − 4.90597 = 0.61403 m behind the



secondary mirror. That is, when we apply the mirror equation to this ‘object’, we’ll need to use an
object distance of do = −0.61403 m.

Where does the final image form then? For the secondary mirror, we have a focal length of f =
−0.679 m and an object distance of do = −0.61403 m (relative to the mirror location), creating an

image distance of: di =
dof
do−f

= (−0.61403)(−0.679)
(−0.61403)−(−0.679)

= +6.4172 m.

This will be 6.4172 m to the right of the secondary mirror, which puts it 1.51 m behind the primary
mirror (in the figure, that would be slightly to the right of the primary mirror). To deal with this,
the primary mirror actually has a hole cut out of its middle so that the light from the secondary
mirror can pass through, where it can then be captured by the cameras and other instruments
placed behind the primary mirror.

Effective Focal Length

So how does this turn into a focal length that’s so much longer than the telescope itself?

The magnification factor for a mirror is m = hi/ho = −di/do, but for far objects, di is essentually
just f , so m ≈ −f/do.

Let’s look at the two-mirror situation now.

For the first mirror, m1 ≈ −f1/do = −5.52/do.

The secondary mirror takes that ‘object’ and further magnifies it by a factor of m2 = −di/do =
−(6.4172 m)/(−0.61403 m) = +10.45.

The overall magnification then is m = m1m2 =
−5.52
do

× 10.45 = −57.7/do.

If we look back a step though, the magnification for a single concave mirror looking at something
far away is m = −f/do so apparently this combination of two mirrors has an effective focal length
of f = +57.7 m (over 4 times as long as the telescope itself).

Note 1 : The actual focal length for Hubble’s two-mirror system is quoted as being f = 57.6 m so
we’re slightly off, which is almost certainly due to the fact that some of the measurements used in
this calculation were rounded to the nearest millimeter, but those are the most accurate values I
could find.

Note 2 : The next major space telescope is the James Webb Space Telescope (hopefully to be
launched in the next year or two), which expands on this idea by using three curved mirrors to
achieve an even longer effective focal length of 131 m.



Example: Sound Refraction

For light (and other electromagnetic waves), the incoming and refracted ray angles (relative to
the normal) are related by: n1 sin θ1 = n2 sin θ2, where n = c/v is the index of refraction of the
materials.

Snell’s Law applies to any propagating waves, though, not just light. The more generic version is:
sin θ1
v1

= sin θ2
v2

where v1 and v2 are the wave propagation speeds in the two media.

Consider a (point) source of sound waves located some distance above an air-water interface. How
will the ‘rays’ of sound from this source refract when they enter the water?

If we rearrange the more generic version of Snell’s law, we have: sin θ2 =
v2
v1
sin θ1. In our scenario,

the source is located in air, so v1 = 343 m/s (speed of sound in air) but below the water, the speed
of sound is closer to v2 = 1500 m/s, so: sin θ2 =

1500
343

sin θ1 = 4.27 sin θ1.

For any given incoming angle, we take the sine of that angle, multiple the result by 4.27 and then
take the inverse sine to find the refracted ray angle, which will clearly be (much) larger now.

In the figure below, a point sound source is located at the center of the red blob at the top of the
picture and the (red) lines represent rays travelling outward at 1 degree increments and the black
lines represent the refracted rays these incoming rays turn into.

Since v2 > v1, where will be a maximum incoming angle θ1 for which refraction can occur. Right
at that critical point, the refracted ray reaches θ2 = 90o and any larger incoming angles can’t
refract into the water at all (which means any energy coming in at these higher angles is completely
reflected back out into the air). Here, this critical angle would be sin θc = 343/1500 = 0.2287 from
which θc = 13.2o. (This angle is shown with a thicker red line in the figure.)

The cone of sound that makes it into the water
would be 2× 13.2 = 26.4o across. Let’s compare
that to the full circle (360 degrees) and we see
that only 0.073 of the energy makes it into the
water. But actually it’s much worse than that -
the sound is actually spreading out spherically,
so it’s the area on the end of this cone that mat-
ters. This θ = 13.2o ‘cone’ represents a fraction
of the total spherical area of 1−cos θ

2
= 0.0132 so

only a little over 1% of the intensity produced by
the above-water sound makes it into the water.

Once it does so, it spreads out over an entire
hemisphere, making the intensity at any point
under the water even less.


