
PH2233 Fox : Lecture 16
Chapter 34 : The Wave Nature of Light; Interference and Polarization

As already noted, EM waves like light can be modelled two ways. The previous chapters focused
on the ‘particle’ model where the energy is carried by photons travelling in straight lines (as long as
the wave speed remains the same, otherwise refraction can occur). This approach (generally called
geometric optics) was successful explaining how mirrors and lenses work.

Light (and other EM waves) can also display very wave-like behavior too, and the next two chapters
will focus on those wave-like aspects, with the wave fronts (points along the wave at the same phase)
being perpendicular to the ‘rays’ (the photon paths).

The wave approach is needed to explain several behaviors of light and other EM waves:

Oil Slick
Soap Bubble

Window Film

The wave nature of EM waves is also the foundation of antenna theory, designing collections of
sources that will ‘focus’ a signal in a particular direction (or multiple directions, like a multi-antenna
wireless router).

Wireless Antenna Wireless Antenna



(34-1) : Huygens’ Principle and Diffraction

Back in the mid 1600’s, Isaac Newton focused on the ‘ray’ approach (geometric optics) but in
parallel Dutch scientist Christian Huygens focused on using a wave-based approach.

The big idea here is to treat each point on the wave front
as a point-source radiating outward, allowed us to predict
where the wave front will be some ∆t in the future.
Huygens did this geometrically. If the wave speed at
a certain point in space is v, then at a time ∆t later,
each point-source will spread out a distance v∆t. By
drawing lots of these spreading point-sources, a ‘nexus’
forms showing where the overall wavefront will be ∆t in
the future. (Typically ∆t is chosen to be one period of
the wave, so given the position of a wave front at some
time, this geometric construction shows where that wave
front will be one period (one wavelength) in the future.)

It can also be done mathematically where every point in a snapshot of the ‘wave field’ is treated as a
point source (with an amplitude equal to whatever its value is at that point in the field), expanding
outward with whatever the wave speed is at that point, and then integrating over all those to yield
the wave field at some time in the future. We did that for a few simple cases in a graduate optics
class and I remember it being pretty gruesome mathematically, involving complex variables, so we
won’t go down that path here. We don’t need to either since Huygens’ simple geometric idea helps
us understand quite a few wave phenomena.

One of the wave features Huygens’ principle helps explain is diffraction. In the figures below, we
see a simple plane wave propagating to the right and encountering a barrier with a hole in it. In
the left figure, only half the wave is blocked by the barrier and as the wave passes through, the
Huygens wavelets yield nice strong wave fronts on the other side of the opening, but also weaker
wave fronts ‘diffracting around’ the edge of the barrier.

In the middle figure, we have a barrier with a fairly large hole in it (a hole that’s larger than the λ
of the wave).

In the figure on the right, we have a very small hole (smaller than λ) where the wave field on the
other side of the barrier looks more like what we’d get from a point source.

(We’ll focus much more on this diffraction effect in the next chapter.)



(34-2) : Huygen’s principle and the law of refraction

We already used Huygens’ ideas to derive Snell’s
Law of refraction back in chapter 32 (see ch32-
lecture13.pdf) and I won’t repeat that deriva-
tion here.
Essentially each wave front is advanced one period
in time by drawing the little Huygens wavelets,
each with a radius of vT but since v is different in
the two media, the wave fronts in the lower-speed
medium are closer together.

This process led directly to the generic form of Snell’s Law:

sin θ1
v1

= sin θ2
v2

When EM waves are involved (light, radio/tv, infrared, etc) we define the index of refraction as
n = c/v so v = c/n and making that substitution provides the version more often used with EM
waves:

n1 sin θ1 = n2 sin θ2
Important Concept : waves don’t disappear or pile up endlessly anywhere. Waves leave one
medium at a certain rate (frequency) and enter the other medium at the same rate (frequency).
The frequency doesn’t change.

Impact on wavelength

v = λ/T = λf , so if the frequency doesn’t change but the wave speed does change, then it’s the
wavelength that ends up changing as the wave moves into a different medium.

λ2 = v2T → λ2 = cT/n2

λ1 = v1T → λ1 = cT/n1

Dividing these two equations:

λ2/λ1 = v2/v1 = n1/n2



Example : the Sun emits photons spanning the
visible spectrum and beyond. We see something
as ‘blue’ because the material preferentially re-
flects that light and/or absorbs other colors.

What wavelength would this ‘blue’ light have un-
derwater? In air, let’s suppose this ‘blue’ has
λ1 = 480 nm.

I’ll use subscript 1 to represent parameters while
the beam is in air, and subscript 2 to represent
when under the water, so here n1 = 1.000 and
n2 = 1.33 ≈ 4/3.

Visible Spectrum
ultraviolet < 380 nm
violet 380− 450 nm
blue 450− 495 nm
green 495− 570 nm
yellow 570− 590 nm
orange 590− 620 nm
red 620− 750 nm
infrared > 750 nm

What wavelength will the light have underwater? λ2 = (n1

n2
)λ1 = ( 1

1.33..
)(480 nm) = (0.75)(650) =

360 nm (which is NOT VISIBLE).

How about a different color like red, with a wavelength of about 650 nm?

λ2 = (n1

n2
)λ1 =

1
1.333...

× (650 nm) = 488 nm, which is BLUE.

Highway Mirages : Huygens’ wavelets help explain the phenomenon seen in the figure below.
This happens much more frequently in the desert areas of the southwest but I’ve seen it here too
on very hot days. Basically the air near the road surface is so hot that its density is lower, resulting
in a slightly lower n right near the road than the n a bit higher up. The wave fronts travel farther
λ = vT so we ‘see’ rays taking two different paths from the object to our eye.



(34-3) : Interference - Young’s double-slit experiment

Suppose we have an opaque sheet with two thin parallel ‘slits’ cut into the sheet. If we send waves
(with a single frequency or wavelength) towards this sheet, what will happen?

The ray model of light would say that we should see two bright lines on the other side of the sheet.
Photons either go through the little openings, or they run into the opaque part of the screen.

In fact, what we see is an image like the one shown in the bottom figure.

What’s going on?

Well, light is also an electromagnetic wave. If
sound waves or water waves ran into a barrier with
two small openings in it, the wave shape passes
through each opening and spreads out like we see
here.
This geometry looks like what we did back in
chapter 16 when we had two speakers each emit-
ting sound of the same frequency.



If we place a screen on the other side from the source, what signal will we record on the screen at
various locations?

The first pictures below show the general situation, but normally the distance to the screen is vastly
larger than the distance between the two slits. As a result, the paths from each slit to the screen
are essentially parallel.

This geometry, where l >> d is called the FAR FIELD approximation.

If we’re right along the mid-line between the two slits (figure (a) above), the waves from each
‘source’ travel the same distance to reach that point, so they arrive ‘in phase’. The two (say) sine
waves combine and create a higher amplitude (i.e. higher intensity, or ‘brighter’) signal.

If figure (b) above, the sine waves from the lower
slit had to travel exactly one wavelength farther
than the waves from the upper slit. When they
arrive at the screen, one sine wave is shifted by
exactly one wavelength relative to the other but
that means they’re still ‘in phase’ with each other
and still yield a strong signal.
The upper set of three figures here on the right
shows that situation: the two sine waves are in
sync with each other and yield constructive in-
terference.
In figure (c) above though, one path was exactly
1
2
λ longer than the other. When these reach the

screen, one of the waves is delayed by a half-
wavelength relative to the other. That situation
is shown in the bottom set of three figures on the
right here. The two sine waves essentially cancel
each other out, yielding destructive interfer-
ence.



Figure (d) above is reproduced and magnified here. If the
distance to the screen is much larger than the distance
between the two slits, the two paths are very nearly par-
allel, so the ‘extra path length’ is seen to be d sin θ.

If the path difference is exactly a multiple of λ, the two
waves arrive in phase and yield a strong signal (a bright
spot). Mathematically we can write this as:
CONSTRUCTIVE interference

d sin θ = mλ for m = 0, 1, 2, · · ·

If the path difference is exactly a multiple of λ PLUS AN
ADDITIONAL HALF WAVELENGTH, the two waves
arrive perfectly OUT of phase and cancel each other (a
dark spot). Mathematically we can write this as:
DESTRUCTIVE interference

d sin θ = (m+ 1
2
)λ for m = 0, 1, 2, · · ·

What about angles in between? For any other
angle, the two sine waves will combine and yield
a somewhat reduced amplitude. Not a double-
strong signal when they’re perfectly in phase, but
not a zero amplitude when they arrive perfectly
out of phase, so something in between (we’ll look
at this in more detail in the next section).



Typical Lab Design

A typical double-slit lab experiment involves two closely cut slits with the interference pattern
forming on a screen some distance away (a distance much larger than the slit separation).

Consider a double-slit experiment where the two slits are separated by d = 0.1 mm, with a screen
placed 1.20 m away. We shine a laser with λ = 500 nm on the slits. Determine where the bright
(constructive) peaks will be located?

Constructive interference occurs when d sin θ = mλ for m = 0,±1,±2, ....

The first peak will be at m = 0 for which θ0 = 0o.

The next peak will be at m = 1 for which sin θ1 = mλ
d

= (1)(500×10−9 m)
1×10−4 m

= 5 × 10−3 from which
θ1 = 0.2865o or θ1 = 5.000..× 10−3 rad.

Note that for angles this small, sin θ ≈ θ, when the
angle is measured in radians. Since sin θ = mλ

d
,

the angles will be tiny when d >> λ . This is
called the SMALL ANGLE regime.
How far are these two bright spots from each other
on the screen 1.2 m away?
From the figure, xm = (l) tan θm but again these
angles are so small that as long as we stick with ra-
dians, we can use tan θ ≈ θ and x1 = (1.2 m)(5×
10−3 rad) = 6× 10−3 m = 6 mm.

As long as l >> d (the ‘far field’ situation) AND d >> λ (the ‘small angle’ case) then:

d sin θm = mλ becomes θm ≈ mλ
d

.

The bright spots on the screen will be located at xm = l tan θm or xm ≈ (l)θm or finally xm ≈ m lλ
d

The distance from each bright spot to the next is ∆x = lλ
d
.

Rearranging that last equation: λ = d∆x
l

which means for a given slit spacing (d)
and distance away (l), the separation distance between the bright lines ( ∆x) directly
maps into the wavelength involved.

This gives us a tool to determine the wavelength of a light source (or potentially
any EM wave): a spectrometer. As long as we know l and d and can measure
how far apart the bright (high intensity) spots are, we can determine the wavelength
of the source. Note we’ve made no other assumptions about this wave, other than
l >> d >> λ, so this process can sometimes be applied to other waves too, including
sound, water waves, and so on.

(Most spectrometers use either prisms or ‘gratings’ which we’ll see in the next chapter
and we’ll see there why these are better options than trying to use the double-slit
geometry as a spectrometer.)



Example: Spectrum

Suppose we direct light from the Sun through a double-slit arrangement with d = 0.50 mm with
the screen located at l = 2.5 m away from the slits. What will we see? The Sun includes all visible
wavelengths (and beyond), sometimes called ‘white’ light.

The peaks are at xm ≈ m lλ
d

so the first peak (m = 0) will be at x0 = 0.0 m regardless of the
incoming wavelength of the light.

The next ‘peak’ at m = 1 will occur at x1 = (1) lλ
d
which we could write as x1 =

l
d
λ. Each different

wavelength λ in the light source will cause a bright line at that physical location x on the screen.

Here then: x1 = (1) (2.5 m)(5×10−4 m)
λ

.

Looking at the range of visible wavelengths, violet light (λ = 400 nm) has its peak at x1 = 2 mm
but 700 nm red light has its peak at x1 = 3.5 mm.

The ‘white’ light from the Sun has been spread out so we can see its entire (visible) spectrum.

A sodium vapor lamp or LED light has only a few wavelengths instead of this continuous spectrum,
so we’d see lines with just those colors instead of a complete spectrum.



Example: Single Speaker and Two Open
Windows
Consider a 500 Hz tone in a room with two (nar-
row) open windows separated by 1 m. What pat-
tern will be have? Assume FAR FIELD but NOT
small angle. (Why can’t we use the ‘small angle’
approximation here?)
vsound = 343 m/s so 500 hz corresponds to λ =
v/f = 344/500 = 0.688 m.
(We need d >> λ to be able to use the ‘small
angle’ approximation but here d = 1 m and λ =
0.688 m so the d >> λ test fails.)

Constructive interference (a loud sound) will occur where:

d sin θm = mλ so sin θm = mλ
d
= (m)0.688 m

1 m
= 0.688m, for m = 0,±1,±2, etc.

At m = 0 we have sin θ = 0 so θ = 0 is one direction where we get a strong signal.

At m = ±1 we have sin θ = ±0.688 or θ = ±43.4o

For any higher m values, the RHS exceeds 1, so we have no solutions.

Destructive interference (‘no’ sound) will occur where:

d sin θm = (m+ 1
2
)λ so sin θm = (m+ 0.5)(0.688), for m = 0,±1,±2, etc.

For m = 0, we get θ = +20.1o and for m = −1 we get θ = −20.1o.

Any other m values yield a RHS larger than 1 and we can’t do the inverse sine any more, so we
have no other solutions for the ‘dead spots’.



Example: wireless router
Consider a wireless router operating at 2.4 GHz.
This particular router has two antennas separated
by 6.25 cm.
The wireless signals are radio (EM) waves travel-
ling at the speed of light, so what will the wave-
length of these waves be? v = λ/T = λf so
λ = v/f = c/f = ((3× 108 m/s)/2.4× 109s−2) =
0.125 m or 12.5 cm.

The wavelength is comparable to the separation between the two antenna, so we can’t use the ‘small
angle’ approximation here, but we’re probably at least several meters away from this router, so the
‘far field’ approximation should be ok.

Constructive interference occurs where d sin θ = mλ for m = 0,±1,±2... so: 6.25 sin θ = (m)(12.5)
or sin θ = (2)(m). The ONLY solution will be with m = 0 in which case θ = 0 (and θ = 180o) so
we’ll have a nice strong single along a line perpendicular to the antennae.

Destructive interference occurs where: d sin θ = (m + 1
2
)λ for m = 0,±1,±2... so: 6.25 sin θ =

(m+ 0.5)(12.5) or sin θ = (2)(m+ 0.5).

m = 0 yields sin θ = (2)(0 + 0.5) = 1 which occurs at θ = 90o

m = −1 yields sin θ = (2)(−1 + 0.5) = −1 which occurs at θ = −90o.

There are no other solutions, so this pair of antennae has a strong single in front and behind, but
basically zero signal off to the sides.

What about other angles?

(34-4) : Intensity in the double-slit interference pattern

Consider two sources, each emitting the same frequency
signal in phase with one another, and suppose we’re ‘far
away’ from these sources so we can use the far-field ap-
proximation.
We’re interested in how the intensity behaves as a func-
tion of angle θ as shown in the figure.
Each source is putting out a signal proportional to sinωt
but at the angle shown, the signal from source 1 has
a shorter distance to travel, so arrives earlier than the
signal from source 2. The signal from source 2 had to
travel an additional d sin θ (meters), so it’s wave shape
is shifted by that much relative to the signal from source
1. It’s easier to combine these two sine waves if we draw
an imaginary point at their midpoint and look at how
each is shifted relative to that point. In that case, source
1 travels a distance that is shorter by d

2
sin θ, source 2

travels a distance that is longer by d
2
sin θ.



What phase shift does that physical distance represent? A physical shift of one full wavelength
λ represents a phase shift of 2π radians so a distance shift of d

2
sin θ represents a phase shift of:

ϕ = (d
2
sin θ)× 2π

λ
.

We can write the combined signal now as: E(t) = sin (ωt+ ϕ) + sin (ωt− ϕ) and now we can use a
trig identify to simplify this.

sin (A±B) = sinA cosB±cosA sinB which turns our combined signal into: E(t) = 2 sin (ωt) cosϕ.

This gives us the amplitude of the combined signal, but as with any wave the intensity (brightness
in the case of light, loudness in the case of sound, etc) is the time-average of the amplitude squared,
ultimately leading to the intensity being proportional to cos2 ϕ.

We can write this as: I = Io cos
2(πd sin θ

λ
) and now we can draw a (polar) graph showing the intensity

of our wireless router at any angle. If you want to know the intensity at θ = 30o for example, draw
a line starting at the origin radiating out making an angle of +30o relative to the +X axis and
where it intersects this graph, that’s the intensity at that angle.

The left figure shows our ‘antenna pattern’ for the pictured router operating at f = 2.4 GHz,
showing a strong signal at θ = 0 and θ = 180o and no signal at θ = ±90o.

This router also uses the f = 5.0 GHz band and the figure on the right shows the pattern at that
frequency. Now we have narrower peaks at θ = 0 and θ = 180o but very broad strong signals at
θ = ±90o.

Both frequencies have low intensity right between the four axis directions though ( θ = ±45o and
θ = ±135o), so people trying to use this router in those directions would have difficulty getting a
signal.

f = 2.4 GHz with d = 6.25 cm f = 5.0 GHz with d = 6.25 cm

(At the end of the lecture I talked a little about adding a delay to an antenna to effectively shift
the angles where the peaks occur, but that’s getting a bit deeper into antenna theory than we can
go in this class. Lots of neat stuff in this field though, so stop by if you want more information on
that topic.)


